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ABSTRACT. In this paper we analyze, from the perspective of ‘Embodied Cognition’,
why learning and cognition are situated and context-dependent. We argue that the nature
of situated learning and cognition cannot be fully understood by focusing only on so-
cial, cultural and contextual factors. These factors are themselves further situated and
made comprehensible by the shared biology and fundamental bodily experiences of human
beings. Thus cognition itself is embodied, and the bodily-grounded nature of cognition
provides a foundation for social situatedness, entails a reconceptualization of cognition
and mathematics itself, and has important consequences for mathematics education. After
framing some theoretical notions of embodied cognition in the perspective of modern
cognitive science, we analyze a case study – continuity of functions. We use conceptual
metaphor theory to show how embodied cognition, while providing grounding for situ-
atedness, also gives fruitful results in analyzing the cognitive difficulties underlying the
understanding of continuity.

1. INTRODUCTION

An important goal of mathematics education is to understand the think-
ing involved in doing and learning mathematics. In recent years, it has
become widely accepted that the learning and practice of mathematics
are not purely intellectual activities, isolated from social, cultural, and
contextual factors (Lave, 1988; Collins et al., 1989; Cobb, 1994; Confrey,
1995). Instead, it has been acknowledged that learning and teaching take
place, and have always taken place, within embedding social contexts that
do not just influence, but essentially determine the kinds of knowledge
and practices that are constructed (Lave and Wenger, 1991; Rogoff, 1990;
Walkerdine, 1982). Perspectives that focus on the social and contextual
nature of knowledge, and that make the embedding situation prominent in
the analysis of cognition, have been labeled as ‘situated’. Research and
theoretical frameworks based on a situated approach to cognition insist
that linguistic, social, and interactional factors be included in any account
of subject matter learning, including the learning of mathematics. The
hallmark of this approach is that it ‘considers processes of interaction as
basic and explains individual cognitions and other behaviors in terms of

Educational Studies in Mathematics 39: 45–65, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.



46 RAFAEL E. NÚÑEZ ET AL.

their contributions to interactive systems’ (Greeno, 1997, p. 15). Lave and
Wenger make this claim explicit when they state that ‘there is no activity
that is not situated,’ and when they note the perspective’s ‘emphasis on
comprehensive understanding involving the whole person rather than ‘re-
ceiving’ a body of factual knowledge about the world; on activity in and
with the world; and on the view that agent, activity, and the world mutually
constitute each other’ (Lave and Wenger, 1991, p. 33).

These approaches have yielded many important results, and have helped
to move the analysis of learning beyond a narrow focus on individual and
‘internal’ cognitive processes. Yet we would argue that the nature of situ-
ated learning and cognition cannot be fully understood by attending only
to contextual or social factors considered as inter-individual processes.
Thinking and learning are also situated within biological and experiential
contexts, contexts which have shaped, in a non-arbitrary way, our char-
acteristic ways of making sense of the world. These characteristic ways
of understanding, talking about, and acting in the world are shared by
humans by virtue of being interacting members of the same species, co-
existing within a given physical medium. The overall aim of this paper
is to present elements of a theory which focuses on how human cog-
nition is bodily-grounded, that is,embodied within a shared biological
and physical context, and to examine the ways in which this embodi-
ment helps to determine the nature of mathematical understanding and
thinking. In particular, we intend to investigate foundational aspects of
situatedness by bringing in alternative approaches to orthodox cognitive
science, approaches which focus on embodiment. One of our claims is
that the situated cognition perspective, as valuable as it, leaves open im-
portant questions, such as: What is the grounding for situated knowing
and learning? What is the basis of social situatedness? We share with the
situated learning approach the belief that knowledge and cognition exist
and arise within specific social settings, but we go on to ask what it is
that makes possible the mutual intelligibility underlying shared social un-
derstandings. Our claim is that the grounding for situatedness comes from
the nature of shared human bodily experience and action, realized through
basic embodied cognitive processes and conceptual systems.

When taken seriously, genuine embodiment entails a reconceptualiz-
ation of the nature of cognition and of mathematics itself, with corres-
ponding implications for teaching (Lakoff and Núñez, 1997; forthcoming).
A first implication is that we must leave behind the myth of mind-free
mathematics as being about eternal, timeless truths, a legacy of Plato and
Descartes. From an embodied perspective, the notion of an objective math-
ematics, independent of human understanding, no longer makes sense.
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Another implication is that we are required to give an account of a mind-
based mathematics, including an explanation of its stability and efficacy,
in terms of the human bodily-based and situated conceptual systems from
which it arises. Such an account should be useful in understanding prob-
lems in the teaching and learning of mathematics, and in designing more
effective instruction.

In this paper, we will first frame the notion of embodied cognition
within an intellectual and theoretical context, and elaborate the relation-
ship between situated learning and embodied cognition. Next, we will
present an example of a mathematical topic – continuity – that has presen-
ted teaching and learning difficulties, as a case study that can be fruitfully
understood from an embodied cognition perspective. We close with a dis-
cussion of implications and directions for further work in mathematics
education utilizing the perspective of embodied cognition.

2. FRAMING EMBODIMENT THEORETICALLY AND HISTORICALLY

Early mainstream cognitive science (cognitivism)

The situated learning perspective was welcomed by educational research-
ers and theorists as a richer and more appropriate means of addressing
cognition than that offered by the formal, cognitivist models of early main-
stream cognitive science, which emerged in the 1970s. This latter approach,
strongly influenced by the objectivistic tradition of analytical philosophy
and by functionalism, focused on learning as a process of individual reas-
oning, often explained in computational terms. Researchers in mainstream
cognitive science at that time held that in explaining human cognition, it
was necessary (and sufficient) to ‘posit a level of analysis wholly separate
from the biological or neurological, on the one hand, and the sociolo-
gical or cultural, on the other’ (Gardner, 1985, p. 6). This separate level
of analysis focused on the individual as a processor of information, and
characterized reasoning as the manipulation of arbitrary symbols. Under
this view, symbols gain meaning from being associated with an objective
reality, which is modeled in the mind by internal representations corres-
ponding, to greater or lesser degrees of accuracy, with that external reality.
This view of cognition became (and still is) pervasive in cognitive psy-
chology (see for example, Sanford, 1985; Eysenk and Keane, 1992), and
was subsequently adopted by some researchers in mathematics education
seeking a paradigm for understanding mathematical thought.

This school of cognitive science – cognitivism – maintained the Carte-
sian dualism which holds that the mind is an abstract entity, separate from
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and transcending the body. Reasoning (including mathematical thought)
is also non-corporeal, timeless, and universal. Concepts, the products of
reasoning, are similarly abstract, and are not limited by physical or bodily
realities. Cognitivism is thus based on objectivism, the doctrine that as-
sumes transcendental ontological truths that are independent of human un-
derstanding (for details see Núñez, 1995). Under this view of knowledge,
an objectivist would hold that the Pythagorean theorem, for example,is
true and valid in this and in any universe, irrespective of the existence of
human beings. This framing of mind and reasoning is consistent with a
model of cognition as computation, and with a functionalist stance which
holds that is it possible to study the mind purely in terms of the functions
it performs, without seriously considering how the brain and body actually
work.

The limitations, both theoretical and empirical, of cognitivism have be-
come apparent in the 25 years since it became prominent. For example, this
approach has been unable to satisfactorily model or account for everyday
cognitive phenomena such as common sense, sense of humor, and natural
language understanding. In addition, the information processing models
that came out of early mainstream cognitive science bore little resemblance
to the observed processes of real life problem-solving and learning found
either inside or outside the classroom (Rogoff and Lave, 1984; Lave, 1988;
Confrey, 1990; Nunes and Bryant, 1996). Furthermore, the objectivism
of mainstream cognitive science was incompatible with the premises of
radical constructivism, which does not assume a pre-determined reality
that is straightforwardly accessed by the observer or learner (Cobb, 1994;
Cobb, Yackel and Wood, 1992; Von Glasersfeld, 1990). As a result of these
limitations, many researchers in mathematics education concerned with
developmental, social, and cultural factors have rejected cognitive science,
assuming that it had little to offer. However, alternative approaches to the
scientific study of human mind have emerged within cognitive science it-
self, approaches that reject the assumptions of the objectivist, dulist, and
functionalist school. In these approaches, cognitive processes and con-
cepts are not abstract or transcendent, but rather fully embodied, emergent
phenomena.

Embodied cognition

In the 1980’s, a number of alternative perspectives emerged within cognit-
ive science, originating in different disciplines, but sharing a commitment
to investigating cognition as a physically-embodied phenomenon, realized
via a process of codetermination between the organism and the medium
in which it exists. Rather than positing a passive observer taking in a
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pre-determined reality, these paradigms hold that reality is constructed
by the observer, based on non-arbitrary culturally determined forms of
sense-making which are ultimately grounded in bodily experience.

The term ‘embodiment’ is used in a number of different ways within
contemporary cognitive science, and these varied uses at times reflect fun-
damental theoretical differences. For some, embodiment refers to the phe-
nomenological aspects of the human bodily experience (Merleau-Ponty,
1945; DiSessa, 1983), and the resulting psychological manifestations
(Rosch, 1994). Certain theorists stress the unconscious aspects of bodily
experience that underlie cognitive activity and linguistic expression (John-
son, 1987; Lakoff, 1987). Others focus on the organization of bodily action
under principles of non-linear dynamics (Thelen and Smith, 1994). Yet
others emphasize the biologico-structural codefinition that exist between
organisms and the medium in which they exist, from which cognition
results as an enactive process (Maturana and Varela, 1987). Along these
lines, some stress the importance of the supra-individual biological pro-
cesses that underlie high level cognition (Núñez, 1997), and others bring in
embodiment as a crucial paradigm in anthropology (Csordas, 1994; Lock,
1993). Notions of embodiment are even explicitly used in the design of
responsive and adaptive non-living systems (Brooks and Stein, 1993) and
in structured connectionist computer models of cognitive linguistic activity
(Feldman et al., 1996; Regier, 1996).

At a foundational level, our analysis builds on work by Rosch in cognit-
ive psychology (Rosch, 1973, 1994; Varela et al., 1991); Edelman (1992)
in neuroscience; Maturana and Varela in theoretical biology (Maturana and
Varela, 1987) and more explicitly on the work by Lakoff and Johnson in
cognitive linguistics (Lakoff and Johnson, 1980, 1998), and Lakoff and
Núñez in mathematical cognition (Lakoff and Núñez, 1997; forthcoming).
All these scholars share a focus on the intimate relation between cognition,
mind, and living bodily experience in the world, that is, on the ways in
which complex adaptive behavior emerges from physical experience in
biologically-constrained systems.

Within this paradigm, the knower and the known are codetermined, as
are the learner and what is learned. Thus, cognition is about enacting or
bringing forth adaptive and effective behavior, not about acquiring inform-
ation or representing objects in an external world. The potential of this
perspective for building a more satisfactory account of human thinking is
expressed by Varela, Thompson and Rosch, when they state, ‘If we wish to
recover common sense, then we must invert the representationist attitude
[of a pre-given world] by treating context-dependent know-how not as
a residual artifact that can be progressively eliminated by the discovery
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of more sophisticated rules, but as, in fact, the very essence ofcreative
cognition’ (Varela et al., 1991, p. 148).

3. EMBODIMENT AND THE ANALYSIS OF CONCEPTUAL STRUCTURES

Since the concept of embodiment is relatively new within the field of math-
ematics education, we would like to clarify our use of the term, and distin-
guish it from other notions concerning the role of the physical and concrete
in mathematics learning. From our perspective, embodiment is not simply
about an individual’s conscious experience of some bodily aspects of being
or acting in the world (e.g., memories of the first time we went skating
or riding in a roller coaster). Embodiment does not necessarily involve
conscious awareness of its influence. Nor does embodiment refer to the
physical manipulation of tangible objects (e.g., playing with Cuisinaire
rods or pattern blocks), or to the virtual manipulation of graphical images
and objects instantiated through technology. Although there is a relation-
ship between such experiences and the technical concept of embodiment,
an embodied perspective does not constitute a prescription for teaching in
a ‘concrete’ way. Similarly, although embodiment may provide a theoret-
ical grounding for understanding the teaching and learning of ‘realistic’ or
‘contextualized’ mathematics, it is not directly concerned with ‘contextu-
alization’ or ‘situatedness’ in subject matter teaching. Rather, embodiment
provides a deep understanding of what human ideas are, and how they are
organized in vast (mostly unconscious) conceptual systems grounded in
physical, lived reality.

Johnson (1987) offers a nice example of how basic, universal bodily
experience serves as the grounding for abstract understandings in his dis-
cussion of the experience of balance. The experience of balance is part
of our everyday life and makes possible our physical experience of the
world as well as our survival in it. The experience of being physically-
balanced is so basic and pervasive that we are rarely aware of it. Balancing
is an activity we learn with our bodies from very early ages, simply by
acting, existing and developing in the world. It is not learned by acquiring
abstract rules or algorithms. Moreover, the sensation of balance is so basic
that allhomo sapiens – no matter when and where they live on earth – have
experienced it. As such, it is one of a class of deep, unconscious, yet per-
vasive bodily-based experiences providing a space of commonalties that
makes up the ground for shared human sense-making. At the same time,
the meaning of this experience, its working out in cultural expressions such
as language, art, dance, science, and so forth, is both socially-constructed
and situated.
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We build up the meaning of balance through the active ongoing ex-
perience of bodily equilibrium and loss of equilibrium. Along with this
process, we start making sense of related systemic bodily experiences; for
example, the feeling that our fingers are not warmenough, or the mouth is
too dry, and so on. Our understandings of ‘too much’, ‘not enough’, or ‘out
of balance’ are pre-conceptual, non-formal, and non-propositional. Sense-
making is built up in advance of formal or abstract concepts of quantity
or ‘balance’. The embodied meaning of balance is intimately related to
our experience of bodily systemic processes and states of being in the
world, and in particular, to theimage-schematic structures that make those
experiences coherent and significant for us.

Image-schemata

Image schemata are perceptual-conceptual primitives that allow the organ-
ization of experiences involving spatial relations. Some examples of image
schemata are thecontainer schema (which underlies concepts like IN and
OUT); thesource-path-goal schema (TO and FROM); thecontact schema;
and theverticality schema. Many basic concepts are built on combinations
of these schemata. For instance, the English concepton uses three basic
schemata: verticality, contact, and support. Image schemata appear to be
universal, although in different languages the meanings of the words char-
acterizing spatial relations may be composed of different combinations of
these primitives. For example, not all languages have a single concept like
the Englishon. In German, theon in on the table is rendered asauf, while
theon in on the wall, which does not have the support schema, is translated
asan. Thus the two Germanons decompose into different combinations of
the three component image schemata (Lakoff and Núñez, forthcoming).

It is important to mention that image-schemata are not static propos-
itions that characterize abstract relations between symbols and objective
reality. Rather they are dynamic recurrent patterns which order our actions,
perceptions, and conceptions. These patterns emerge as meaningful struc-
tures for us mainly through the bodily experience of movement in space,
manipulation of objects, and perceptual interactions. As Johnson states,
‘They are a primary means by which we construct or constitute order and
not mere passive receptacles into which experience is poured’ (Johnson,
1987, p. 29).

Abstract concepts such as ‘balancing’ colors in a picture, ‘balancing’
a checking account, or ‘balancing’ a system of simultaneous equations
are conceptual extensions of the image schemata involved in the bodily
experience of ‘balance’. These extensions occur through concepual map-
pings, including the important mechanism known as conceptual metaphor.
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Indeed, it is our thesis that the basis of a great deal of our mathemat-
ical knowledge lies in such conceptual mappings. As Lakoff and Núñez
state, ‘much of what is ‘abstract’ in mathematics . . . concerns coordination
of meanings and sense making based on common image-schemata and
forms of metaphorical thought. Abstract reasoning and cognition are thus
genuine embodied processes’ (Lakoff and Núñez, 1997, p. 30).

Conceptual metaphor

Conceptual metaphors are ‘mappings’ that preserve the inferential struc-
ture of a source domain as it is projected onto a target domain. Thus the
target domain is understood, often unconsciously, in terms of the relations
that hold in the source domain. For instance, within mathematics, Boolean
logic is an extension of the container schema, realized through a concep-
tual metaphorical projection of the logic of containers. This metaphor-
ical projection preserves the original inferential structure of IN, OUT, and
transitivity, developed originally via physical experiences with actual con-
tainers, and later unconsciously mapped to a set of abstract mathematical
concepts (Lakoff and Núñez, forthcoming).

The ‘projections’ or ‘mappings’ involved in conceptual metaphors are
not arbitrary, and can be studied empirically and stated precisely. They
are not arbitrary, because they are motivated by our everyday experience –
especially bodily experience, which is biologically constrained. Research
in contemporary conceptual metaphor theory has shown that there is an ex-
tensive conventional system of conceptual metaphors in every human con-
ceptual system. These theoretical claims are based on empirical evidence
from a variety of sources, including psycholinguistic experiments, gen-
eralizations over inference patterns, extensions to novel cases, historical
semantic change, and the study of spontaneous gestures (Lakoff, 1993).

It has been found that metaphorical mappings are not isolated, but oc-
cur in highly-organized systems and combine in complex ways. As with
the rest of our conceptual system, our system of conventional conceptual
metaphors is effortless and lies below the level of conscious awareness
(when we consciously produce novel metaphors, we utilize the mechan-
isms of our unconscious conventional metaphor system). Unlike traditional
studies of metaphor, contemporary embodied views don’t see conceptual
metaphors as residing in words, but in thought. Metaphorical linguistic ex-
pressions thus are only surface manifestations of metaphorical thought (for
an extensive discussion of conceptual metaphor theory and mathematics,
see Lakoff and Núñez, forthcoming).
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Embodiment and situatedness

The fact that embodiment and the mechanisms involved in conceptual
mappings specify non-arbitrary links between cognition and experience
helps to answer our question about the grounding for situated knowing
and learning. That is, embodiment offers a rationale for the mutual under-
standing that exists within social situatedness. As Johnson says,

Meaning is always a matter of human understanding, which constitutes our experience of
a common world that we can make sense of. A theory of meaning is a theory of under-
standing. And understanding involves image-schemata and their metaphorical projections
. . . These embodied and imaginative structures of meaning have been showed to be shared,
public, and ‘objective’, in an appropriate sense of objectivity (Johnson, 1987, p. 174).

From this point of view, cognition is neither subjective and isolated –
unique to an individual – nor completely determined by external influ-
ences. Conventionalized meaning, although it is never context-free, de-
pends to a great extent on shared image-schemata and conceptual pro-
jections, practices, capacities, and knowledge. Meaning is in many ways
socially constructed, but, it isnot arbitrary. It is subject to constraints
which arise from biological embodied processes that take place in the
ongoing interaction between mutually constituted sense-makers and the
medium in which they exist (Núñez, 1997). Therefore, it is not surprising
that cognition and learning are situated. Cognition is embodied; it is bio-
logically grounded in individuals who interact with each other; hence it is
also social and cultural.

4. CASE STUDY: CONTINUITY OF FUNCTIONS

It is widely accepted that teaching and learning the concept of ‘continuity’
of a function, so important for calculus, is a difficult task (Tall and Vin-
ner, 1981; Robert, 1982; Núñez, 1993; Kitcher, 1997). The question then
is, why is this the case? Is continuityper se a difficult concept? In this
section we would like to illustrate how embodied cognition offers fruitful
answers to these questions, by utilizing the tools of cognitive linguistics to
analyze the concept (for details see Lakoff and Núñez, 1997, and Núñez
and Lakoff, 1998).

Let us start taking a look at what textbooks say about continuity of a
function. Here is a citation from a typical textbook introducing the concept:

In everyday speech, a ‘continuous’ process is one that proceeds without gaps or inter-
ruptions or sudden changes. Roughly speaking, a functiony = f (x) is continuous if it
displays similar behavior, that is, if a small change inx produces a small change in the
corresponding valuef (x) . . . Up to this stage, our remarks about continuity have been
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rather loose and intuitive, and intended more to explain than to define (Simmons, 1985,
p. 58).

Later in the same text, one finds what is called the ‘rigorous’, ‘formal’ and
definitive definition of ‘continuity’ of a function, namely:

A functionf is continuous at a numbera if the following three conditions are satisfied:
1. f is defined on an open interval containinga,
2. limx→a f (x) exists, and
3. limx→a f (x) = f (a).
Where limx→a f (x) (the limit of the function ata) is defined as:
Let a functionf be defined on an open interval containinga, except possibly ata itself,
and letL be a real number. The statement

limx→a f (x) = L

means that for everyε > 0, there exists aδ > 0, such that

if 0 < |x − a| < δ, then|f (x) − L| < ε.

This definition of continuity of a function – also called the Cauchy-Weier-
strass definition – is said to be, and taught as, the definition that captures
the essence of what continuity is. It is considered, and taught as, super-
ior and more precise than the so-called ‘intuitive’ and ‘informal’ one.
Moreover, as is evident in the text cited above, this definition intends more
‘to define’ than ‘to explain’.

So far, this is the standard (and from our point of view, misleading,
non-situated, disembodied) story. Let us step back, and carefully analyze
what is going on, cognitively, when considering the statements and ideas
involved in the two definitions.

The two definitions of continuity

The informal/intuitive definition that characterizes a ‘continuous process
as one that proceeds without gaps or interruptions or sudden changes’
was used by such eminent mathematicians as Newton and Leibniz in the
17th century. Euler characterized a continuous function as ‘a curve de-
scribed by freely leading the hand’. This definition involves cognitive con-
tents such as motion, flows, processes, change in time, and wholeness.
These cognitive contents are the result of conceptual extensions from bod-
ily grounded image-schemata and conceptual mappings that are natural
to the human conceptual system. They are built on, among others, source-
path-goal schemata, fictive motion metaphors, and basic conceptual blends
(for details see Lakoff and Núñez, 1997). For these reasons, the textbook
previously mentioned is correct in referring to this idea as occurring in
‘everyday’ speech. What Newton, Leibniz, and Euler did was simply (and,
probably, unconsciously) apply the inferential structure of the everyday
understanding of motion, flow, and wholeness, to a specific domain of
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human understanding: functions and variations. For the purposes of this
case study, we will call this conceptnatural continuity.

The Cauchy-Weierstrass definition on the other hand, involves radically
different cognitive content. It implicitly denies motion, flow and whole-
ness, dealing exclusively with static, discrete, and atomistic elements, which
are conceptual extensions of rather different cognitive primitives, such as
part-whole schemata and container schemata. The point is that, cognit-
ively speaking, these two definitions are radically different; yet,per se,
neither is superior to the other. Although it is true that the so-called ‘rigor-
ous’ definition deals better with complex and ‘pathological’ cases (such as
f (x) = x sin 1/x) for certain purposes, it is not because it captures better
the ‘essence of continuity’. Within an embodied, non-objectivist cognitive
science, there is no transcendental ‘essence’ of a concept, even in mathem-
atics (Edwards and Núñez, 1995). It does so simply because it is built on a
different collection of bodily grounded conceptual mappings that happen
to deal well with both the prototypical cases of functions encountered prior
to the 19th century (e.g.,f (x) = sinx; or f (x) = 1/x), as well as with the
so-called pathological cases. This is the source of its utility and efficacy.

For the purposes of this article, the pedagogical problem can be sum-
marized as follows: students are introduced tonatural continuity using
concepts, ideas, and examples which draw on inferential patterns sustained
by the natural human conceptual system. Then, they are introduced to
another concept –Cauchy-Weierstrass continuity – that rests upon radic-
ally different cognitive contents (although not necessarily more complex).
These contents draw on different inferential structures and different entail-
ments that conflict with those from the previous idea. The problem is that
students are never told that the new definition is actually a completely dif-
ferent human-embodied idea. Worse, they are told that the new definition
captures the essence of the old idea, which, by virtue of being ‘intuit-
ive’ and vague, is to be avoided. This essence is usually understood as
situation-free, that is, independent of human understanding, social activity,
and philosophical enterprises.

Embodied cognition analysis of the two concepts

Let us analyze, from the perspective of embodied cognition, why these two
concepts of continuity – natural and Cauchy-Weierstrass – are cognitively
so different. Although it is not within the scope of this article to provide
a full cognitive analysis of these two ideas (for a complete analysis, see
Lakoff and Núñez, forthcoming), we will present several relevant aspects
for the purpose of a deeper comparison. In particular we will focus on the
fact that the term ‘continuity’, as used in mathematics, can refer to three
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distinct ideas. One isnatural continuity (as in the ‘informal’, ‘intuitive’
definition) and the other two (implicit in the ‘rigorous’ Cauchy-Weierstrass
definition) areGaplessness (for lines as sets of points) andPreservation of
Closeness (for functions).

Natural continuity:

The following are some essential features of a continuous function accord-
ing to natural continuity:

a) the continuous function is formed by motion, which takes place over
time.

b) there is a directionality in the function.
c) the continuity arises from the motion.
d) since there is motion, there is some entity moving (in Euler’s version,

the hand).
e) the motion results in a static line with no ‘jumps’.
f) the static line that results has no directionality.

What is the source of these notions of motion, staticness, and direction-
ality? From the perspective of embodied cognition, we conceive of the
mobile and static aspects of a continuous curve via the activation of an
everyday human conceptual process: the fictive motion metaphor (Talmy,
1988). This metaphor can be summarized as follows:

• A Line IS The Motion of a Traveler tracing that line.

Examples of this mapping are abundant in everyday language:

– Highway 80goes to Sacramento.
– Just before Highway 24reaches Walnut Creek, itgoes through the

Caldecott Tunnel.
– After crossing the bay, Highway 80reaches San Francisco.

In these cases a highway, which is a static linear object, is conceptualized
in terms of a traveler moving along the route of the highway. Using the
same cognitive mechanism, we can speak, in mathematics, of a function
as moving, growing, oscillating, approaching values, and reaching lim-
its. It is worth noting that this way of speaking is not limited to students
but includes professional mathematicians as well. Formally speaking, the
function does not move, but cognitively speaking, under this metaphor, it
does – and that is what matters in terms of understanding.

These embodied natural and everyday human cognitive mechanisms are
the ones that make possible the intuitive dynamic and static conceptualiz-
ation of a continuous function. As in Euler’s characterization, continuity is
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characterized by motion in the Fictive Motion metaphor. Using this meth-
odology we can give a precise cognitive account of Euler’s intuitive notion
of continuity for a function in terms of elements of ordinary embodied
human cognition, showing how mathematical ideas are constituted out of
ordinary bodily grounded ideas.

Cauchy-Weierstrass continuity:

The Cauchy-Weierstrass definition was motivated by complex mathem-
atical objects that mathematicians first encountered in the 19th century,
and emerged from three important intellectual movements of that time:
the arithmetization of analysis; the set-theoretical foundations movement;
and the philosophy of formalism. These movements were separate in their
goals, but complementary in their effects on the development of mathemat-
ics. All of them required conceptualizing lines, planes, and n-dimensional
spaces as sets of points.

The Cauchy-Weierstrass definition requires a series of cognitive prim-
itives, also embodied in nature, but different from the ones used to con-
ceptualize natural continuity. There are at least three relevant conceptual
metaphors that combine their inferential structures in a systemic way to
give an extremely powerful mathematical tool. These metaphors are:

• A Line IS a Set of Points
• Natural Continuity IS Gaplessness
• Approaching a Limit IS Preservation of Closeness Near a Point

A Line IS a Set Of Points

In general terms, there are two importantly different ways of conceptual-
izing a line:
1) A holistic one, not made up of discrete elements, where a line is abso-
lutely continuous and points are locationson a line. In this sense, a line
is an entity distinct from the points, that is, locations on that line, just as a
highway is a distinct entity from the locations on that highway. Lines, from
the perspective of our everyday geometric intuition, are natural continua in
this sense.
2) A Line Is A Set Of Points. According to this metaphor, the points are
not locationson the line, but rather they are entitiesconstituting the line.

The first characterization is congruent with natural continuity and the
second with Cauchy-Weierstrass’ definition. The distinction between these
two ways of conceptualizing lines (and hence planes and n-dimensional
spaces) has been crucial throughout the history of mathematics, and the
failure to distinguish between them has led to considerable confusion. Both
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conceptions are natural, in that both arise from our everyday conceptual
system. Neither is ‘right’ or ‘wrong’ per se; however, they have very dif-
ferent cognitive properties, and provide different inferential structure. It
is this fact that should be taken into account in the teaching and learning
process.

Natural Continuity IS Gaplessness

According to our everyday intuition, a line constitutes anatural continuum.
As we move along a line, we go through point-locations. When we move
continuously along a line from a locationA to a locationB, we go through
all point-locations on the line betweenA and B, without skipping over
any, that is, without leaving any gaps between the point-locations. In this
case we will say that the collection of point-locations betweenA andB is
gapless when the line segmentAB is naturally continuous.

The metaphor underlying the Cauchy-Weierstrass definition identifies
the point-locations on a line as constituting the line itself. Such a meta-
phorical ‘line’ is not a natural continuum, but only a set of points. When
a naturally continuous line segment is conceptualized as a set of points,
that set of points will begapless. Thus, in this specific situated conceptual
context, the metaphor A Line Is A Set Of Points entails the metaphor:

• Natural Continuity IS Gaplessness.

Therefore, a line conceptualized as a set of points cannot be – cognitively –
naturally continuous but onlygapless. This terminology thus distinguishes
two distinct ideas, based on different cognitive mechanisms, that have
previously both been called ‘continuity’.

Approaching a Limit IS Preservation of Closeness Near a Point

In Cauchy-Weierstrass’ definition of limit there is no motion, no time, and
no ‘approach’. Instead, there are static elements. The definition calls for a
gapless ‘open interval’ of real numbers; there are no lines and no points
and no surfaces in that metaphorical ontology for the Cartesian plane. The
plane itself is a made up of a set of pairs of real numbers. The gapless-
ness of the set of real numbers in the open interval is Cauchy-Weierstrass’
metaphorical version replacing the natural continuity of the intuitive line
in Newton’s geometric idea of a limit.

The idea of the functionf approaching a limitL asx approaches a is
replaced by a different idea (in order to arithmetize ‘approaching’ avoiding
motion), that is,preservation of closeness near a real number: f(x) is arbit-
rarily close toL whenx is sufficiently close toa. The epsilon-delta condi-
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tion expresses this precisely in formal logic. What the Cauchy-Weierstrass
approach does is to provide a new metaphor:

• Approaching A Limit IS Preservation Of Closeness Near A Point.

When Cauchy-Weierstrass ‘define’ continuity for a function, they cannot
mean – cognitively – the natural continuity assumed by Newton for or-
dinary lines, that is, natural continua. Again, they must use conceptual
mappings (metaphors) that allow them to reconceptualize geometry (hol-
istic lines) using arithmetic (discrete numbers). Just as they needed a new
metaphor for approaching a limit, they needed a new metaphor for con-
tinuity of a function. They characterize this new metaphor in two steps:
first at a single arbitrary real number, and then throughout a (gapless)
interval. Their new metaphor for continuity uses the same basic idea as
their metaphor for a limit:preservation of closeness. Continuity at a real
number is conceptualized as preservation of closeness, not just near a real
number but alsoat it. Continuity of a function throughout an interval is thus
preservation of closeness near and at every real number in the interval.

What is precise in the Cauchy-Weierstrass definition?

Textbooks and curricula lead students to believe that it is the epsilon-delta
portion of these definitions that constitutes the rigor of this arithmetization
of analysis. Moreover, they are led to believe that it is this aspect that
captures the essence of what ‘continuity’is. As we see, not only this is
not true, but the epsilon-delta aspect of the definition actually plays a far
more limited role. The epsilon-delta aspect accomplishes only a precise
characterization of the notion ‘correspondingly’. This notion occurs in the
dynamic definition of a limit, where the values off(x) get ‘correspondingly’
closer toL asx gets closer toa. This is the only vagueness that is made
precise by the epsilon-delta definition.

Another interesting element in the Cauchy-Weierstrass definition is the
role played by the idea of ‘gaplessness’. The Cauchy-Weierstrass formu-
lates the ‘definition of continuity’ with the explicit condition that the func-
tion is defined over an open interval. It assumes this open interval to be
gapless. Since gaplessness was the way to metaphorically conceptualize
continuity on the real line, it assumes a gapless (i.e., ‘continuous’) input
to the function. What this definition really shows is that (1) when these
metaphors hold, especially when lines are metaphorically conceptualized
as sets of real numbers, and (2) when the input of the function is gapless,
and (3) when the function preserves closeness, then (4) the output is also
gapless.
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Why has it been widely accepted that Cauchy-Weierstrass’ definition
of preservation of closeness was instead a ‘definition of continuity’? The
answer is that it has been assumed, falsely, that Cauchy-Weierstrass’ meta-
phors capture the essence of continuity because they deal effectively, for
the purposes of the arithmetization program, with prototypical and patho-
logical cases. Given the metaphor that a line is a set of real numbers, then
natural continuity can only be conceptualized metaphorically as gapless-
ness. Since Cauchy-Weierstrass’ open interval condition guaranteed that
the inputs to the function are always gapless, it is no surprise that preser-
vation of closeness for a function with a gapless input guarantees a gapless
output. If the input is metaphorically continuous (that is, gapless), then
the output is going to be metaphorically continuous (gapless). Since the
metaphors are mostly realized through unconscious processes, and they
fit the prototypical cases, they are not noticed as being metaphorical or
controversial in any way. Furthermore, since the open interval condition
hid the continuity (gaplessness) required in the input, Cauchy-Weierstrass’
definition appeared even to the originators to be a definition of continuity,
when in fact, all it did was guarantee that a gapless input for a function
gives a gapless output.

5. DISCUSSION

As a discipline, mathematics education is concerned not only with creating
effective means and methods of instruction, but with understanding why
certain methods are effective and others are not, and with larger ques-
tions about the nature and development of mathematical knowledge. Our
answers to these questions, and even the ways we choose to investigate
them, are strongly influenced by our implicit or explicit conceptualization
about the nature of human thought, and about mathematics itself. When
mathematics is conceived of as an external realm of objective truths, to be
‘discovered’ through the application of rational thinking, then the invest-
igation of mathematics learning focuses on accurate mappings, models,
and internal representations of mathematical entities and relationships. If,
on the other hand, mathematics is conceived as a product of adaptive hu-
man activity in the world, shared and made meaningful through language,
but based ultimately on biological and bodily experiences unique to our
species, then mathematics education must take a different approach. New
practices in mathematics education, from classroom teaching to scientific
research and curriculum design, should emerge that present mathematics
as a genuine mind-based activity with all its embodied peculiarities and
beauty.
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Through the analysis of the idea of continuity, we have seen that cer-
tain ways of talking and thinking about mathematics can be misleading,
with unfortunate pedagogical consequences. These consequences can arise
when we ignore how our conceptual system works, implicitly assuming the
existence of a ‘mind-free’ mathematics. We propose that one important
source of pedagogical problems in mathematics education are the philo-
sophical foundations that have dominated our view of mathematics (ob-
jectivism, platonism, formalism). These philosophical commitments are
necessarily (if unintentionally) transmitted in the teaching process, which
can lead to the teaching of definitions and supposed eternal truths that
capture mathematical essences, rather than mind-based, embodied, human
forms of sense-making. The fundamental conceptual error underlying this
kind of teaching is the idea that intuition can be replaced by rigor in order
to eliminate vagueness. Not only is this not possible, but it is not necessary
for effective learning (c.f., Smith et al., 1993/94). If one studies natural,
situated, spontaneous, everyday thoughts and intuitions from an embod-
ied cognitive perspective, one finds that they are not at all vague. The
tools provided by the embodied cognition approach allow one to character-
ize precisely how the inferential structure of everyday bodily experience,
which underlies intuition, is mapped onto more abstract domains.

Basic mathematical ideas show an impressive stability over hundreds,
sometimes thousands of years. For this to happen requires, on the one
hand, a common set of neural and bodily structures with which to contruct
mathematical concepts. On the other hand, it requires that this conceptual
construction make use of the most commonplace of everyday experiences,
such as motion, spatial relations, object manipulation, space, and time.
The study of the conceptual structure of mathematics from an embodied
point of view shows how mathematics is built up out of such informal,
everyday experiences and ideas. For this reason, mathematics cannot be
conceived as a pure and ‘abstract’ discipline. Our mathematical concep-
tual system, like the rest of our conceptual system, is grounded in our
bodily functioning and experiences. Seen from this perspective, situated
cognition is not about ‘situating’ mind-free truths in meaningful contexts,
but rather about examining how the human creation of mathematics arises
from sense-making which is not arbitrary preciselybecause it is bodily
grounded.

This view has important entailments for mathematics education. Rather
than looking for better ways to help students learn ‘rigorous’ definitions
of pre-given mathematical ideas, we need to examine the kinds of un-
derstanding and sense-making we want students to develop. We should
look at the everyday experiences that provide the initial grounding for
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the abstractions that constitute mathematics. This is not necessarily an
easy undertaking, since the grounding structures are often unconscious
and taken-for-granted. At times, this grounding can be found in imme-
diate physical experience, as in the case of work with early arithmetic,
space, size, and motion. At other times, the grounding for a mathemat-
ical idea takes place indirectly, through a chain of conceptual mappings
whose nature may be obscured by conventional language, but which can
be revealed by utilizing the analytic tools of contemporary embodied cog-
nitive science. In either case, what is important is to re-examine mathem-
atical ideas in order to create instruction that complements the ways our
conceptual systems naturally work.

In addition, we should provide a learning environment in which math-
ematical ideas are taught and discussed with all their human embodied
and social features. Students (and teachers) should know that mathematical
theorems, proofs, and objects are about ideas, and that these ideas are situ-
ated and meaningful because they are grounded in our bodily experience
as social animals. Providing an understanding of the historical processes
through which embodied ideas have emerged can support this aim. This
does not mean simply presenting a few names and dates as a prelude
to teaching the ‘real’ mathematics. It means talking about the motiva-
tions, zeitgeist, controversies, difficulties, and disputes that motivated and
made possible particular developments in mathematics. Pierpont (1899),
for example, provides excellent material for appreciating the controversies
surrounding intuition, the concept of continuity, and the arithmetization
program at the turn of the century.

In this paper, we have attempted to provide an overview of the essential
elements of a theory of embodied cognition, and to apply this relatively
new framework to the analysis of mathematical thought and learning. This
framework is extremely rich, and systematic work on the analysis of math-
ematical thought is only beginning to take place. We presented a brief
account of one such analysis, in order to illustrate the potential of this
framework. We also addressed the relationship between theories which
emphasize the socially-situated nature of cognition and the embodied cog-
nition approaches. From our perspective, there is no contradiction between
these approaches; rather, an understanding of the fundamental embodiment
of cognition helps us to see how human beings are able to construct mutual
understandings through social interaction. Since we, human beings, are all
living physical creatures, acting within the same medium and sharing a
basic biological heritage, we naturally experience the world in fundament-
ally similar ways. The conceptual structures which emerge in the human
mind to make sense of our bodily experiences provide the raw material
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for the construction of shared communication through language, and, sub-
sequently, the shared construction of meanings. Thus, our understandings
of the world, and of mathematics, may be socially and culturally situated,
but is the commonalties in our physical embodiment and experience that
provide the bedrock for this situatedness.
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