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Abstract

Clinical and epidemiological studies have found that type 2 diabetes, and hyperinsulinaemia, increased the risk of developing Alzheimer’s
disease (AD) in the elderly. The link between hyperinsulinaemia and AD may be insulin-degrading enzyme (IDE). This enzyme degrades
both insulin and amylin, peptides related to the pathology of type 2 diabetes, along with amyloid-� peptide (A�), a short peptide found in
excess in the AD brain. We review the current evidence, which suggests that hyperinsulinaemia may elevate A� through insulin’s competition
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ith A� for IDE. Genetic studies have also shown that IDE gene variations are associated with the clinical symptoms of AD as w
isk of type 2 diabetes. The deficiency of IDE can be caused by genetic variation or by the diversion of IDE from the metabolism of� to the
etabolism of insulin. It is intriguing to notice that both hyperinsulinaemia and IDE gene variations are related to the risk of AD w
polipoprotein E4 (ApoE4) allele, the major risk factor of late-onset AD, is not present. Further studies of the role of IDE in the path
f AD, which may uncover potential treatment target, are much needed.
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. Introduction

The United States Census Bureau projects that between
005 and 2025 the total population will grow 20%, but the
emographic of age 65 and over will increase by nearly 50%.

∗ Corresponding author. Tel.: +1 617 636 3754; fax: +1 617 636 3781.
E-mail address: wqiu@tufts-nemc.org (W.Q. Qiu).

As the population ages, type 2 diabetes and Alzheim
disease (AD) are becoming surging epidemics. Both
eases are chronic and complicated, and they are the
ing causes of morbidity and mortality in the elderly[88].
Several epidemiology studies have shown that type
abetes increased the risk of AD in both cross-sect
and prospective populations. Further, elevated peripher
sulin, a common biomedical sign of type 2 diabetes,
197-4580/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
oi:10.1016/j.neurobiolaging.2005.01.004
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Table 1
The summery of the studies related to type 2 diabetes and Alzheimer’s disease in elders

Cross-sectional studies
support

Cross-sectional studies
do not support

Longitudinal studies
support

Longitudinal studies
do not support

Longitudinal followed by
neuropathological studies
support

Longitudinal followed by
neuropathological studies
do not support

Ott et al.[67] Nielson et al.[65] Leibson et al.[51] None Peila et al.[70] None
Kuusisto et al.[49] Tariot et al.[87] Ott et al.[68] Janson et al.[41]
Stewart and Liolitsa[83] Grodstein et al.[34]
Sinclair et al.[80] Luchsinger et al.[56]

Peila et al.[70]
Xu et al.[96]
Arvanitakis et al.[4]
Janson et al.[41]

The studies either support or do not support that type 2 diabetes increases the risk of AD in elders.

been singled out as a possible independent risk factor of
AD.

To date, it has been found that the Apolipoprotein E4
(ApoE4) allele is a major risk factor of late-onset AD[85].
However, 50% of AD patients do not possess ApoE4; other
risk factor(s) might contribute to the pathogenesis of the dis-
ease. In the process of elucidating other contributing fac-
tors the association between hyperinsulinaemia and AD was
found to be particularly strong in populations lacking ApoE4.
While the mechanism behind such a relationship is still
unclear, it is noted that the two diseases share a common
protease, insulin-degrading enzyme (IDE). This review will
summarize the relevant data on the relationship of type 2 di-
abetes and hyperinsulinaemia with AD. We will also present
current researches indicating a relationship among IDE and
the two diseases.

2. Type 2 diabetes and Alzheimer’s disease

Cross-sectional studies in epidemiology using different
large populations have shown that the percentage of type
2 diabetes among AD patients is significantly higher than
among age-matched non-AD controls[49,67,83]. At the
same time, type 2 diabetes patients are also shown to suffer
m tus
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In AD, one of the neuropathological hallmarks is the
presence of neuritic plaques in the brain, which contain ex-
tracellular deposits of A� that have formed filaments; an-
other neuropathological character is neurofibril tangle[33].
To date, multiple studies show that A� is the cause of AD
[78] (reviewed by Selkoe), and yet soluble oligomers of A�
possess more neurotoxic components[19,69,91]. The Hon-
olulu study is a cohort study of ethnic Japanese males with
neuropathological diagnosis made by autopsies. It showed
that comorbid diabetes caused a higher number of neuritic
plaques, neurofibrillary tangles and cerebral amyloid an-
giopathy in the AD brain[70]. Another study confirmed this
finding, and also found that islet amyloid, the pancreas pathol-
ogy found in some type 2 diabetics, was more frequent and
extensive in the AD patients without type 2 diabetes than
non-AD controls[41].

Despite the strong evidence that type 2 diabetes increases
the risk of AD in these studies, two cross-sectional studies
reported lower rates of type 2 diabetes when the AD patients
at the nursing home or at the clinic were compared to the
controls[65,87]. Since these studies were based on severely
ill patients, which were different from the community-based
studies, those who suffered from both type 2 diabetes and
AD were more likely not to be included if their life span was
shorter due to the combination of the diseases. We summarize
these current studies related to type 2 diabetes and AD in
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ore from cognitive impairment, lower Mini-Mental Sta
xam (MMSE) score and lower rate of correct Clock Draw
est (numbers and hands), as compared with the non-dia
ubjects[80].

In longitudinal studies following large populatio
rospectively, type 2 diabetes subjects as compared t
on-diabetic control group have double the risk of

4,34,51,68,70,96]. Moreover, the rate of onset of AD
igher among patients who have suffered from type 2
etes for more than 5 years compared to those with a di
uration of less than 5 years[51]. Such an observation i
icates that the pathological process of association is
nd probably accumulative. The oral diabetic medicat

hat stimulate pancreatic� cells to release more insulin ha
een shown to elevate the incidence of AD among diab
atients[56,68]. Insulin treatment caused even greater
f AD among these subjects.
able 1. In fact all the prospective studies, the majority
ross-sectional studies and the neuropathological ana
upport the conclusion that type 2 diabetes increases th
f AD. A possible cause of disagreements among rese
ndings is that hyperinsulinaemia, which is variable pre
n diabetic patients, may be more specifically related to
han type 2 diabetes per se.

. Hyperinsulinaemia and the risk of Alzheimer’s
isease in the absence of ApoE4

In the pre-clinical syndrome of type 2 diabetes, hy
nsulinaemia precedes hyperglycemia by many years[93],
nd as a result, the insensitivity of the insulin recepto

he defect of signal transduction, probably due to chr
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over-stimulation, is considered to be the cause of the dis-
ease. After the onset of type 2 diabetes, hyperinsulinaemia is
present among many but not all diagnosed cases[50]. Several
studies have shown that insulin concentrations in serum were
higher among AD patients as compared to a control group
[14,30,49,75]. One cross-sectional study reported that 37%
of AD subjects suffer from impaired glucose tolerance, pre-
sumably also having elevated plasma insulin, versus 19.9%
of non-AD subjects in the same population[49]. Insulin lev-
els under fasting conditions are associated more with AD
than are insulin levels 2 h post glucose loading. It has been
shown that hyperinsulinaemia (>89.4 pmol/l) is associated
with a high risk of AD among the subjects who do not carry
ApoE4 allele (7.5% versus 1.4%,P = 0.0004), but has no ef-
fect on the risk when the ApoE4 gene is present[17,49].
Insulin-mediated energy metabolism was lower in the AD
patients without ApoE4 than the AD patients with ApoE4
[16].

A recent longitudinal study conducted by Mayeux et al.
has further indicated that hyperinsulinaemia increased the
risk of AD [55]. Craft et al. have also shown that the plasma
concentration of insulin is positively correlated with the
severity of AD[18]. Strikingly, the same group has demon-
strated that peripheral infusion of insulin in the elderly peo-
ple (mean age 68.7) increased the level of A� in CSF within
120 min, which also correlated with the decreased memory
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4. Insulin-degrading enzyme

There are probably several mechanisms underlying the
relationship between type 2 diabetes and the increased risk
of AD. For example, the formation of advanced glycation
end product (AGE) in diabetes has been shown to be aggre-
gated with A� in plaques of AD brain. Diabetes also causes
cerebrovascular changes that are associated with AD[20]
(reviewed by de la Torre). However, these could not explain
that elevated insulin itself without the clinical syndrome of
type 2 diabetes is strongly related to AD[55,84]. We thus
hypothesize that IDE plays the critical role in the mechanism
associating hyperinsulinaemia and type 2 diabetes with AD.
We will present the evidence that AD might be caused in
some cases by increases of A� due to the failure of clearance
by IDE or the deficiency of IDE itself.

IDE is a neutral thiol metalloprotease, which requires both
a free thiol and bivalent cations for its activity as a protease. It
is a single polypeptide with a molecular weight of 110 kDa,
and dimers or trimers of it have been purified under non-
denaturating conditions[66]. Zn2+ is the metal bound to IDE.
The active site of IDE consists of the sequence His-Glu-aa-
aa-His (HEXXH) in which the two histidines coordinate the
binding of the zinc atom and the glutamate plays an essential
role in catalysis[5,7]. IDE was co-isolated with the multi-
catalytic proteinase, suggesting that IDE might be involved
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unction [92]. Such phenomenon was not observed am
he younger subjects (mean age 60.8) in the study. N
heless, unlike the studies of the peripheral insulin level
he risk of AD, the relationship between the insulin leve
erebrospinal fluid (CSF) and AD remains unclear. One s
as been reported that the insulin level in CSF was decr
mong AD patients[18], yet another report showed no d

erence in the CSF insulin levels between the AD cases
ontrols[60].

Cognitive impairment, the clinical symptom of AD,
lso shown to be associated with elevated plasma insu

he absence of clinical diabetes syndrome. One case
howed that a patient with insulinoma presented with
itive impairment, which was not resolved after blood g
ose concentration was corrected[38]. Two cross-section
tudies have demonstrated that both lower Mini-Mental S
xam (MMSE) score and poor long-term memory were
ificantly correlated with higher insulin level[84,89]. The
ssociation was present with and without cardiovascula
ase, and also present after excluding subjects with dia

84].
Unlike the positive correlation between type 2 diab

nd AD described above, which was not demonstrate
he samples of nursing home and ambulatory patient
he epidemiological studies have consistently shown th
ationship between increased peripheral insulin levels
he risk of AD. In summary, these studies suggest tha
vated insulin rather than type 2 diabetes alone lea
D pathology, especially in populations without Apo
llele.
n a protein complex[10]. An endogenous 14 kDa inhibit
f IDE appears to regulate its activity[66]. In addition, ubiq
itin forms a complex with, and inhibits the activity of, ID
ithin the cells[77].
The gene encoding IDE is located on chromosom

23–q25 in humans[2]. It spans approximately 120 kb, a
ontains 24 exons and large sequences of introns. The c
equence is highly conserved during evolution fromE. coli,
oDrosophila, to human. The homologous regions of the I
ene among eukaryots are contained in exons as well as

rons. This suggests that the protease function of IDE, w
s mediated by the exons of IDE, and the regulation of
ene expression, which is likely buried in the surround
equences of exons, are conserved during evolution.

IDE is ubiquitously expressed, with its highest expres
n the liver, testes, muscle and brain[46]. Its expression is reg
lated during cell differentiation and growth with IDE mRN

evel increased in the brain and testes when developmen
eeds[6]. Further, IDE expression is affected by aging, w
DE activity significantly decreased in both the muscles
iver of old animals as compared to young animals[76].

The subcellular localization shows that IDE is abund
n cytosol and peroxisomes[5] (reviewed by Authier). In
ddition, IDE is also found in rough endoplasmic ret

um (RER), plasma membrane as well as in the extrace
ompartment[73]. Although the mechanism of IDE to loca
utside the cells is unclear, we identified intact IDE in
an CSF, further indicating that IDE does exist in extrace

ar fluid under physiological condition. Biochemical stud
ave shown the presence of IDE in the soluble fractions
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human brains, which contain both extracellular and cytosolic
compartments[57,71]. To exclude the possibility that IDE
merely sticks to the plasma membrane during the subcellular
separation, Vekrellis et al. biotinylated the surface of intact
cells and still found the labeled IDE in the plasma membrane
fraction[90]. IDE’s subcellular location seems regulated dur-
ing development and differentiation. In undifferentiated neu-
ronal PC 12 cells, IDE is found present on the cell surface as
well as released into the extracellular space. When the cells
differentiate in response to growth factor, IDE is no longer
secreted[90].

5. Insulin-degrading enzyme degrades insulin,
amylin and amyloid-� peptide

To date, all the identified genes with missense mutations
that predispose an individual to AD either increase A� pro-
duction or enhance A� fibrillation. The actual amount of neu-
rotoxic A� in the brain is determined by (1) A� production
through Amyloid Precursor Protein (APP) processing and (2)
A� degradation and clearance. Several proteases are involved
in A� degradation in vitro, but the two major enzymes in vivo
are IDE and Neprilysin (NEP)[54].

Several short peptides with molecular weights of
3–10 kDa have been shown to serve as the substrates of IDE,
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Since A� is secreted extracellularly, and deposits outside
the neuronal cells in the AD brain, we took an approach to
screen any secreted protease(s) in neuronal and non-neuronal
cell culture media for the ability to degrade A�. Among all
secreted proteases from the cells, only IDE degraded A�. We
found that under physiological conditions IDE is secreted
at high levels from the microglial cells, and degrades A�
extracellularly[73]. Purified IDE from rat liver and brain
was shown to degrade A� effectively. IDE is present in the
soluble fractions from human brains, and binds and degrades
A� specifically[57,71]. Primary cultured neurons were also
shown to clear A� via extracellular IDE as well as IDE on
the cell surface[90]. IDE from brain homogenates degrades
different forms of A�: A�40, A�42 and an A� mutant in
one type of AD (Dutch Variant 1-40 Q)[61,71]. A�42 is the
longer form of A� and more abundant in the AD brain.

A� degrading activity by IDE was shown to be lower in
AD brains than in the controls[71]. Moreover, the amount
of hippocampal IDE protein was also found to reduce in AD
brains as compared to the controls[15]. When the IDE gene
was deleted in mouse model, A� levels in the brain were
elevated[27,58], suggesting IDE activity is critical in deter-
mining the amount of brain A� in vivo. More significantly,
enhanced IDE activity in the IDE and APP double transgenic
mice decreased their brain A� levels, and prevented the for-
mation of AD pathology[52].
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ncluding insulin[44], insulin-like growth factors I and
59], amylin [9], A� [48,57,62,73]and others. The peptid
ubstrates share little to no homology of primary amino
equence, but have similar secondary structure and
oidogenic character[8,47]. Therefore, IDE likely plays
ole in catabolic regulation, especially in preventing for
ion of amyloid deposits by cleaving the component pept
mong the substrates of IDE, insulin and amylin are rel

o the pathogenesis of type 2 diabetes, while A� is involved
n AD pathology.

IDE has been shown to play a major role in the degr
ion and clearance of insulin in vivo. A cross-linking stu
as shown that insulin binds IDE specifically in the in
ells[37]. Overexpression of IDE in cells in culture has b
ound to increase the rate of insulin degradation[45]. On the
ther hand, the injection of IDE specific antibodies into
ells inhibited the process of insulin degradation[79]. The
K rat is an animal model of type 2 diabetes. IDE gene

ations are the genetic cause of diabetes in these animal[26].
he mutated form of IDE expressed in these rats incre

nsulin level as a result of reduced insulin degradation,
auses symptoms typical of human type 2 diabetes synd
28].

Another pathological feature of type 2 diabetes is the p
nce of islet amyloid deposits composed mainly of am

hat causes pancreatic beta cells dysfunction[42] (reviewed
y Kahn). In biochemical analyses, amylin is also spe

cally cross-linked to, and degraded by, IDE[9]. Thus the
ction of IDE in type 2 diabetes is complex, involving m

han regulation of insulin levels alone.
IDE has multiple substrates in vivo with differentKm’s.
hey can compete with each other to be degraded by
ne working hypothesis is that the imbalance of the
trates could affect the degradation process by IDE, and
nfluence the pathogenesis of AD or type 2 diabetes. Ind
dding increasing amounts of insulin, a substrate of IDE

ow Km (Km =∼0.1�M), specifically inhibited enzyme a
ivity for degradation of A� (Km >2�M) [74] in the cell cul-
ure model for secreted IDE. Therefore, if the insulin le
ncreases in the brain, it would inhibit IDE to degrade�
ffectively, which could cause A� neurotoxicity, and the
D.
Insulin and insulin receptors are found abundantly in

rain [39], and the imbalance of insulin itself and its s
al transduction in the brain might also contribute to the
athogenesis. Both insulin and its receptors are involve
ynaptic transmission, and appear to play a role in le
ng and memory[94,97]. Insulin and insulin receptors we
hown to decrease in a normal brain with aging, but incr
n AD brains [29]. Several basic science studies have
lored and shown the relationship between the increase
ulin and AD pathology in the aspects other than A� degra-
ation alone. For example, insulin increases the secreti
� into extracellular space[31], stimulates tau phosphory

ion to form neurofibrillary tangles, and impairs insulin sig
ransduction[32,40](reviewed by Gasparini and Hoyer).
ulin also affected APP processing in vivo, a critical mo
lar step in generating A�, to secrete sAPP[13,16,81]. In
ddition, A� reduces insulin binding to insulin recept

95].
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6. Genetic variation of IDE has been associated with
AD as well as type 2 diabetes

Recent genetic studies have shown that chromosome 10
contains potentially important novel gene(s) for late-onset
AD as well as type 2 diabetes[21,22,64,86]. Since the IDE
gene is located on chromosome 10[11], and IDE demon-
strates an ability to degrade insulin, amylin and A�, it is
reasonable to hypothesize that IDE as a candidate gene for
both type 2 diabetes and AD.

Several association studies using a single nucleotide poly-
morphism (SNP) approach have investigated the relationship
between IDE and AD. Some of them have found that the
variations at the intron and surrounding sequences of the
IDE gene were related to late-onset AD in the absence of
the ApoE4 allele. Edland et al. found that in the absence of
ApoE4, certain haplotypes (the pattern of DNA variations) of
the IDE gene predicted risk of late-onset AD in a case-control
study (P = 0.008). In the presence of ApoE4, a risk of devel-
oping AD existed regardless of IDE genotype[23,24]. In an-
other case-control study, which combined clinical symptoms,
CSF analysis and neuropathological examination using four
different populations, genetic variations in the IDE gene in-
creased both the risk for developing AD and the severity of the
disease[72]. In contrast, two other genes at the same locus,
within a 276 kb linkage disequilibrium block identified by
l h AD,
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the evidence for linkage to age at onset was identified∼9 cM
from the IDE gene in AD families[53]. Myers et al. have re-
ported a possible interaction between ApoE4 allele and chro-
mosome 10 loci, and a peak region for linkage on this chro-
mosome was as far as∼77 cM from the IDE gene[63,64].
Therefore, it still remains unclear whether the peak reported
between D10S583 (115 cM) and D10S1671 (127 cM)[11]
and the more proximal peak at D10S1225 (81 cM)[63] rep-
resent linkage to one or two underlying loci. It is also possible
that the IDE gene or a gene close to IDE, impacts AD in the
absence of ApoE4 allele, while the other one at the locus of
chromosome 10 distant from IDE gene relates to the risk of
AD only in the presence of ApoE4.

Like AD, type 2 diabetes is a disease with multiple eti-
ologies, and several genetic loci have been shown to be re-
lated to the disease, including a locus (D10S587) on chromo-
some 10[22]. IDE haplotypes at the 3′ region were shown
to be associated with the diagnosis of type 2 diabetes in
male subjects from the Framingham Heart Study population
[43]. However, it has been found that fasting plasma glu-
cose and HbA1c were associated with IDE polymorphisms
at P value of 0.001–0.025 regardless of gender[43]. When
only male subjects were analyzed, the associations between
the clinical symptoms of type 2 diabetes and the IDE gene
variation became even more prominent reaching theP value
of 0.0001–0.0019. Interestingly, IDE polymorphisms were
f other
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inkage studies on chromosome 10q that segregates wit
ere not found to be associated with AD in this study. Sp

cally two haplotypes of the IDE gene: H2 (odds ratio =
value = 0.01) and H5 (odds ratio = 0.5,P value < 0.0001
ere associated with a decreased risk of late-onset AD
ther IDE haptotype, H4, increases the risk of AD with
dds ratio of 2.9 andP value of <0.0001. The same gene
ariations did not predict any risk of the disease in early-o
D in their study. Interestingly, the IDE gene variations w
ore related to the specific clinical measurements of AD
s MMSE scores, tau levels in CSF, etc. than to the ge
iagnosis of AD alone. In addition, Ertekin-Taner et al.
ently reported that IDE gene variations are also assoc
ith plasma A� levels and the disease itself[25]. These re
ults suggest that variations of the IDE gene likely mo
he phenotype and the severity of AD. However, in the o
wo studies paid no regard to ApoE4 status, the IDE p
orphisms were not shown to be associated with the ri
D [1,12].
Further, several studies have independently mapped

reased risk of AD and its quantitative traits to chromos
0 using genome wide scans. Bertram et al. have perfo

he linkage analyses of seven genetic markers on chr
ome 10q, and six of them mapped near the IDE gene[11].
he highest LOD score was observed in ApoE4-negative
ample at a marker (D10S1710) mapped 9 cM away
DE. Furthermore, an allele-specific association betwee
isk of AD and a marker located within 195 kb of the IDE g
D10S583) has been detected, and the finding was late
rmed by an independent case-control study[3]. In addition,
ound not to be associated with type 2 diabetes in an
ase-control study[35]. Again, unlike the Framingham Hea
tudy design described above[43], this study was conducte
ith both male and female subjects, and it used the diag
f type 2 diabetes as an outcome instead of specific cli
haracteristics of the disease. In addition, the variation o
DE gene also contributes to the different levels of pla
nsulin [36].

Animal studies have revealed that dysfunctional IDE
ease causes the diabetic and neuropathology in GK
26,28]. The studies described above did not consider the
ible relationship between the variation of coding seque
f the IDE gene and the two diseases: type 2 diabete
D in humans. It suggests that the regulation of the IDE
ression likely plays some role in the pathogenesis an
everity of AD and type 2 diabetes in humans. Neverthe
hese studies do not exclude the possibility that the gene
lose vicinity to IDE instead of the IDE gene itself increa
he risk of AD.

. Summary and future research

IDE degrades both insulin and amylin, which are rela
o type 2 diabetes; it also degrades A�, a peptide involve
n AD pathology. The enzyme activity, including substr
ffinities, presents a logical mechanism for the fact tha
erinsulinaemia and type 2 diabetes increase the risk o

n elderly. We hypothesize that the deficiency of IDE, wh
eads to increased A� and thus AD pathology in the bra
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Fig. 1. (A) Hyperinsulineamia increases the level of A� because elevated
insulin competes with A� for IDE. This results in a relative deficiency of
IDE. (B) IDE gene variations cause altered IDE proteins such as in GK rat
or decreased expression levels. Both conditions (A) and (B) can cause the
deficiency of IDE and lead to type 2 diabetes and Alzheimer’s disease.

can be a result of either diversion of IDE from the metabolism
of A� to the metabolism of insulin (Fig. 1A) or IDE genetic
variation (Fig. 1B). Furthermore, hyperinsulinaemia as well
as the IDE gene variations are associated more strongly with
the risk of AD in the subgroup of patients who do not carry
ApoE4 allele.

IDE offers new avenues to the prevention and treatment
of AD:

1. Gene therapy. It has been demonstrated that increased
gene dosage of IDE prevents and treats the AD pathol-
ogy formation in an animal model of transgenetic mice
[52]. As the biotechnology of gene therapy matures, this
approach could become an effective way to treat AD.

2. Enzyme induction. Hersh’s group has found a novel pep-
tide to induce IDE activity[82]. Other research teams are
also actively searching for similar molecules. This ap-
proach is less invasive, and could be an ideal way to pre-
vent AD.

3. Treating type 2 diabetes. Instead of compensating insulin
resistance by the administration of exogenous insulin, re-
searchers should focus on alternative treatments which re-
duce insulin resistance for the subgroup of type 2 diabetes
patients with hyperinsulinaemia. Avoiding excessive in-
sulin would allow more native IDE to be available for A�
degradation, and thus reducing the risk of AD.
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