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Abstract

While we know much about which regions are important for associative memory, we

know little about the processing that occurs within these regions which enable their

contribution to processing associations. We investigated markers of circuit dynamics to

determine how associative memory processing may be gated by engagement of specific

circuits in the Dentate Gyrus. We found shi�s in the rhythms present in local field

potentials of the Dentate Gyrus during cue intervals corresponding to associative

memory task performance. Additionally, during cue intervals, putative granule cells

fired in coherence with specific phases of identified rhythms significantly more in trials

where the animal made a correct association. However, these neurons did not exhibit

firing rate changes in an outcome-predictive manner, suggesting that their engagement

in specific rhythmic circuits is more salient for associative memory processing than

their gross activity.
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Introduction

    Memory allows animals to learn from repeated experience. By repeatedly associating

a unique combination of stimuli with an outcome, animals can build a memory which

allows them to form accurate predictions. This associative form of memory is crucial

not only for tasks of our everyday life, but also for the survival of animals in the wild.

Consider the daily life of a forest rat. It s̓ critical for such an animal to associate and

recall sensory aspects or objects--such as a particular smell or light--at a specific spatial

location, which predicts whether a nearby tree will have shed its delicious fruit or will

be surrounded by dangerous predators. The hippocampus receives sensory inputs from

many structures and is widely known to be important for these types of associative

memories. Primary hippocampal subregions such as the Dentate Gyrus (DG), cornu

ammonis 1 (CA1), cornu ammonis 3 (cornu ammonis 3), and subiculum all receive

independent inputs from sensory regions such as the medial entorhinal cortex (MEC)

and lateral entorhinal cortex (LEC), which respectively carry primarily spatial and

non-spatial information(Amaral et al., 2017; Fernández-Ruiz & Oliva, 2016; E.T. Rolls,

1996; OʼReilly & Rudy, 2001; Eichenbaum, 2015 ) . The convergence of these sensory

inputs could enable processing to occur in these hippocampal subregions which are

necessary for formation, integration, and/or recollection of associative memories.

Results from previous studies involving lesions, pharmacological blockades, and

electrophysiology suggest the potential for a unique role of the DG in associative

memory.
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Animal studies have shown that disruption of synapses at the dorsal DG result in:

attenuated performance on tasks which require a rat to associate different contextual

representations of the spatial environment with different odors to receive a reward

(Morris et al., 2013), less novelty exploration in object-context recognition tasks where

the spatial context cues changed colors (Dees and Kesner, 2013), and diminished

performance on pattern separation tasks for shades of grey (Kesner, 2018).   In rats,

pharmacological blockade of long term potentiation (LTP) along only the perforant

path from LEC to the dorsal DG has been shown to result in significantly substandard

performance in novel object detection tasks. Blockades of LTP in either the perforant

path from MEC or LEC resulted in diminished performance in spatial change detection.

Furthermore, blocking LTP along either path to CA3 resulted in behavioral failures in

both the spatial and object-based tasks (Hunsaker et al., 2007). Importantly, CA3 has

inputs directly from both the perforant paths and from DG, but only the perforant

paths were blocked. This may imply that neither DG or CA3 alone is sufficient to

complete tasks that require recollection and comparison of a previous environment.

Further, the dentate gyrus may process incoming sensory information to form highly

distinct representations of the environment which aid in tasks which involve

understanding the relationships between two otherwise unrelated items. A distinct

form of associative memory processing in the dentate gyrus could be enabled by the

relatively idiosyncratic connections between it s̓ different cell types and their

physiological properties.
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In the DG, an extensive network of highly target specific inhibitory interneurons

give rise to widespread temporal windows of hyperpolarization, drastically increasing

thresholds for action potentials (Buckmaster & Schwartzkroin, 1995), and thereby

differentially limiting communication along the complex sets of both inter-DG and

intra-DG connections to tight temporal windows of momentary reprieve yielded by

refractory periods within the interneuron network. Given the multitude of connections

between cells of the DG and the ability of these cellsʼ physiological properties to be

altered (through mechanisms including, but not limited to, neuroplasticity), the time

course and targets of the DG networks inhibitory currents may be actively modulated to

allow dynamic engagement and disengagement of many functional circuits. The

exchange of charged ions through a neuron's cell membrane marks its activity. This

physiological property allows measures of summed extracellular currents -- such as the

local field potential (LFP) -- , to be used as a high level view into network activity

(Cannon et al., 2014). Assessment of the development of rhythmic components of the

LFP as they relate to the development of cue intervals of associative memory tasks

allows for a more precise view into how DG circuits interact and change in a manner

that may be crucial for processing. Engagement or disengagement of specific circuits

may be crucial for memory formation, integration, recollection, and propagation for

use in other brain regions. Indeed, these rhythmic dynamics have been shown to be

related to successful memory recall and task performance in previous studies

investigating other regions of the hippocampal system (Rangel et al, 2015), within the
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DG itself (Rangel et al, 2016), and to enable functional connections between regions

(Kopell et al., 2000; Bibbig et al., 2002; Pinto et al., 2003).

The above outlined view of oscillatory dynamics implies that information

containing neuronal signals or spikes may only have downstream effects when

integrated into specific phases of rhythmic components of the LFP corresponding to

unique neural circuit engagement. Previous work has shown that temporal

organization of action potentials into different phases of rhythms may act to modulate

the relay of encoded information to local circuits through compression of cell firing

into temporal windows of regional depolarization or hyperpolarization (Kopell et al,

2010; Buzsáki, 2010). A neuron's temporal engagement in the rhythmic electrical

oscillations observable in connected brain regions could be important for modulating

that neurons̓ interactions between cells in the same population and cells in more

distant connected circuits. We aimed to investigate how performance on associative

memory tasks correlated with these proxies for circuit and cell-circuit interactions to

gain insight to the understudied functional anatomy of the DG which is crucial for

associative memory.

Macro level shi�s in rhythms and micro level shi�s in how individual cells

interact with these rhythms may reveal a hidden neural code used to bind multiple sets

of incoming sensory information and associate it with an outcome. By examining

rhythmic dynamics in animals during an associative memory task, we can gain insight
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into how different rhythms may engage different macro and micro level circuits

important for processing learned cues to predict an outcome.

In this work we identified frequency bands of  rhythmic activity which shi�

during intervals containing --potentially conjunctive-- cues for associate memories. We

found that a decrease in theta (5-10Hz) and beta (15-35Hz) amplitude during the cue

interval was predictive of improved associative memory task performance. We then

analyzed how each cells' firing preference for a specific phase of each rhythm found to

develop during cue intervals predicts subsequent associative memory task

performance. We found cell entrainment in specific rhythms during the cue interval

can predict performance in the following associative memory task. Specifically, a

significantly greater population of putative granule cells (cells with <3Hz average firing

rate), exhibit significant entrainment to theta (5-10Hz), beta (15-35Hz), low gamma

(35-50hz) or very high gamma (75-115Hz) rhythms, only during behavioral outcomes

indicative of successful associative memory processing. Importantly, these cells did not

exhibit significant differences in firing rate during the cue interval between the

associative memory task outcomes. Building on previous work, computational models,

and our results, we propose that during learning of associations, repeated stimulation

of sensory inputs to granule cells induces changes in synaptic strength at the

entorhinal-granule cells synapse, which in turn leads to functional changes in the

circuitry of the DG when associative cues reappear. These functional changes manifest

as decreases in theta and very high gamma rhythmic contribution to the local field
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potential, which may be reflective of disinhibition of circuits needed for processing

associative cues. Additional functional changes are observable in the emergence of

spike phase relationships between putative granule cells and theta, beta, low gamma,

and very high gamma rhythmic profiles. Importantly, all of these functional changes

appear to be changes in when, rather than how o�en, putative granule cells fire,

reflecting that circuit engagement may be more important than raw firing rate.

Finally, these results give plausibility to a new conjunctive encoding hypothesis.

If convergence of multiple sensory signals onto single granule cells could result in the

strongest functional changes at the entorhinal-granule synapse and thus downstream

effects, a neural code for conjunctions could be hidden in temporal patterns of granule

cell circuit engagement.The next steps in validating these dynamics as markers of a

conjunctive neural code will involve further analysis of what specific cue-related

sensory information each one of these putative granule cells' spikes may carry.

Methods: Data collection (Section adapted from previous writing by Dr. Lara Rangel.

Data collected in 2016 by Dr. Lara Rangel, Pamela Riviere, and colleagues at the Center

for Memory and Brain, Boston University. Adapted from Dr. Lara Rangel)

All animal procedures were performed in accordance with NIH and Boston

University Institutional Animal Care and Use Committee guidelines. Subjects were six

male Long-Evans rats kept on food and water restriction until they reached 85-90% of

ad libitum body weight. Weights ranged from 500-600g.  
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Behavioral Apparatus: Rats were first exposed to the testing apparatus: a two-arm maze

constructed of black plastic (Figure S1). Each 45-cm arm extended from opposite ends

of a 30-cm central chamber. The central chamber consisted of 20-cm high walls and

two pairs of doors, one black and one clear, that opened onto either arm. All doors

could be independently raised and lowered by electric actuators. The end of each arm

contained a widened area with two circular odor ports (Figure S1, inset), into which an

odorant could be released by opening an air solenoid. Odorants were delivered by air

flowing over vials of oil-based scents, previously characterized as differentiable by the

rats. 12 odors were used, some of which were natural scents (maple, cedar, spearmint,

strawberry, sweet orange, mango, lemon) while the others were chemical odorants

(2-phenylpropionaldehyde, allyl-a-ionone, cis-3-hexen-1-ol, guaiacol, isoamyl acetate).

Each port also contained a vacuum, which removed the odorant a�er release to prevent

cross-contamination of odors between trials. Below each odor port was a tray with a

well, into which water could be released to reward successful performance. Throughout

the maze there were LED sensors to

verify rat movement: two along the

length of each arm, one in each odor

port, one in each water well, and two in

the central chamber. LED sensors in

each odor port and water well also acted

to record stimulus onset and reward

onset, respectively. All maze functions
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were controlled via a computer by MATLAB programs.

Behavioral Training: Each rat underwent a behavioral shaping process to first poke its

snout in an odor port and then increase the length of each poke. Rats received training

sessions in which initially 100ms pokes elicited a water reward. The poke criterion

increased by 100 ms for each poke of sufficient length and dropped by 100 ms for every

two successive unsuccessful pokes until rats learned to consistently poke for 1.5

seconds. During this process, rats only had access to one port at a time and received

equal exposure to all four ports on the maze.

Following poke training, each rat was taught to discriminate between two odors of an

odor pair. During early discrimination sessions, two different context overlays made of

distinct materials were placed over each side of the maze, and the rat was given access

to one arm of the maze at a time. Rats alternated between arms in blocks of 20 trials

during initial training, followed by blocks of 10 trials upon improved performance.

Ultimately, arms switched in a pseudorandom, counterbalanced fashion in all later

sessions. 

Full Task: During each trial, each of the odors would be presented on one side of the

maze, one odor in each of the two ports. Importantly, one odor of the pair was

designated as a “correct” odor, and sustaining a poke of 1.5 seconds in the odor port

containing this odor resulted in a water reward. The other odor was not rewarded, and

a white noise buzz would occur if the rat sustained a poke for 1.5 seconds in that port,

a�er which the rat was required to return to the central chamber before being allowed
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to return to poke again. Upon choosing the correct odor and consuming the water

reward, rats had to return to the central chamber, a�er which the doors would raise,

and the next trial would begin. The same odor was always correct for that context

overlay and side of the maze. The location of the correct odor could switch between the

le� and right ports each trial, and trials were counterbalanced and pseudorandomized

before each session. The roles of the odors were reversed for each arm: the incorrect

odor from the first arm was the correct odor on the second arm and vice versa. Each rat

underwent 80 trials a day until reaching a criterion of 80% accuracy. With this same

final paradigm, rats were trained on one four-odor set (two pairs) for three to five weeks

before surgery and two subsequent four-odor sets for three to five weeks each a�er

surgery. Each four-odor set contained distinct odors and context overlays. Recordings

were collected as rats performed a 96-trial session of the two post-surgery odor sets (24

trials per odor pair).

Hyperdrive Implantation Surgery: Following training, each rat was surgically implanted

with a hyperdrive containing 24 microdrives, each with an independently drivable

tetrode. Each tetrode was composed of four strands of 0.0005” (12 µm) Nickel-Chrome

wire (Sandvik, Stockholm, Sweden), gold-plated to reduce impedance to 200-250kOhms

at 100Hz. The implant site was located over the right dorsal hippocampus

(anterior-posterior [AP] = -4.0 mm; medial-lateral [ML] = 2.2 mm), and tetrodes were

turned down an initial 1.6 mm into the brain immediately following surgery. A�er rats

received two weeks of rest post-surgery, tetrodes were progressively lowered over the
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training period (6-7 weeks) to the pyramidal cell layer of CA1 and granule cell layer DG

(CA1: dorsal-ventral [DV] = 1.9 mm; DG: DV = 2.7 mm). Tetrode locations were

confirmed by LFP characteristics including sharp-wave ripples for CA1 and dentate

spikes for DG, and final locations were confirmed by tissue slide analysis.

Neural Recordings: Recording sessions consisted of a block of 48 trials of odor set 1 (24

with the first odor pair; 24 with the second pair) followed by 48 trials of odor set 2, in

similar fashion. Additionally, all conditions were counterbalanced and

pseudorandomized within each 24-trial block, being pseudorandomized before each

session. Before and a�er recording sessions, the rat was placed on a separate platform

for five minutes to serve as a baseline to compare activity during behavior. Signals were

amplified by a preamplifier 20x and amplified again to 4,000-6,000x (Plexon, Dallas, TX),

with a band-pass filter of 600-6,000 Hz to digitally isolate spikes. Signals were globally

referenced to a wire above the cerebellum, as well as locally referenced to a wire with

low activity. LFPs were digitally isolated with a band-pass filter from 1-500 Hz

(OmniPlex, Plexon). Throughout the session, the rat s̓ location was recorded via digital

video and tracking so�ware (CinePlex, Plexon) that monitored the motion of two LEDs

mounted at the top of the rat s̓ hyperdrive. Along with behavior data from the LED

sensors, this data was timestamped and synchronized with the LFP and spiking data, all

of which was stored offline for later analysis.. Single units were identified in

OfflineSorter (Plexon), comparing features including peak and valley voltage

amplitudes, total peak-to-valley amplitudes, and principal components. 15 recording
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sessions were performed over the course of 3-5 weeks from each rat, with rats resting

on days between sessions.

Methods: Analysis (Conducted by Chris Heyman with assistance from Dr. Lara Rangel

and members of Neural Crossroads Laboratory, University of California, San Diego)

Inclusion criteria: LFP and single unit data originating from electrodes in the dentate

gyrus were filtered to ensure only data from days in which rats completed at least 80%

of scheduled trials and an average of 75% task accuracy for each 4-odor block were

processed.

General segmentation of Data: Data from each day and trial which met the above criteria

were passed through a function which partitioned data by its temporal correspondence

to the rat s̓ behavior (for example: correct, incorrect, or self-corrected, or correct

rejection).

Spectrograms: Data sets passing the above criteria from were decomposed and

segmented into each respective interval (ie 1.5 seconds nose poke of a correct trial) via

Fourier transforms and the multi-taper method from the Chronux open source

MATLAB toolbox (available at: http://chronux.org/) (Mitra and Bokil, 2008). The mean

data for each interval which occurred on a given day for a given rat was taken, then

normalized by iteratively dividing the mean data collected for the corresponding

inter-trial interval (when the rat was in the center chamber of the behavioral

apparatus). Then the base 10 log value of results was taken to adjust the scale of

http://chronux.org/
https://lens.elifesciences.org/09849/#content/contributor_reference_2
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amplitudes before taking the mean across all normalized data. The resultant data was

then plotted as a spectrogram. These spectrograms were then visually analyzed to

reveal frequency bands of interest for further analyses.

Alterations in frequency band development during odor sampling for rhythms of interest:

Whole LFP datasets which met inclusion criteria were passed through third order

butterworth filters banded by frequencies identified through methods outlined in

spectrograms, prior to interval based segmentation listed above, to avoid edging effects

which result from segmented processing. For each interval and condition of interest,

we binned the signal into 6 250ms bins following the nose poke. A two factor repeated

measures ANOVA was run to test for significant differences across bins and conditions

in a given interval. This allowed us to quantitatively determine if the signals observable

in the spectrogram were in-fact dynamically changing and if they differed in a manner

correlated with task performance.

Spike Phase Relationships: A Rayleigh statistic was used to determine if the mean of each

cell's spiking activity was significantly clustered to the corresponding instantaneous

phase of a given rhythm of interest during the odor sampling epoch. As cells behaved

differently depending on the context, they were considered as independent cells in

each context for all single cell related analysis.

Behavioral spike phase relationships: For each cell with significant spike phase

relationshapes (P<0.05) to a given rhythm of interest, we categorized them into

depending on their spike phase relationships being significant during only correct,
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only incorrect, or during both behavioral outcomes. We then assessed if there were

significant differences (P<.05) across the categories using a chi-squared test. Post-Hoc

chi squared tests were then used to compare pairwise for each category with a

bonferroni adjusted P-value of 0.0167.

Session Average Firing Rate: On each day which met above criteria, the total number of

spikes from each DG cell was pooled and divided by the corresponding total time length

of the session. These session average firing rates were then used as criteria for

categorizing cells into functional types which aligned with properties of cell types in

the region (i.e. cells with average firing rate <3Hz corresponding to putative granule

cells).

Interval Average Firing Rate: First, we established which DG cells which were within a

specified session average firing rate range and had a significant spike phase preference

(as quantified by the Rayleigh Statistic) to a given rhythm of interest during the odor

sampling interval.  As cells behaved differently depending on the context, they were

considered as independent cells in each context. This data was then segmented to find

which cells had significant spike phase relationships during correct or incorrect

outcomes.  We assessed how the average firing rate per cell during the interval differed

across outcomes. To do this, we examined the average number of spikes these cells had

per odor sampling interval, in which they exhibited a significant spike phase

relationship for at least one outcome.  If a cell had significant spikes for one outcome

but not another its mean interval firing rate was still calculated. If a cell had significant
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spikes for one outcome but did not fire for another, it s̓ mean interval firing rate for that

outcome was zero. If a cell had significant results for both outcomes, it s̓ mean interval

firing rate was calculated for both.

Testing for differences in Interval firing rate between outcomes: For each rhythm, DG cells

which fell into a session average firing rate range and had a significant spike phase

preference during correct, incorrect, or both trials of interest were assessed for

differences in firing rates during the intervals investigated which could bias the

Rayleigh statistic. Histograms were plotted and the Anderson-Darling test was

employed to assess normality of data. As at least one outcome in each pair of outcomes

did not have a normal distribution, the Wilcoxon Signed Rank test was used to test for

difference in average firing rates between each condition, at each rhythm.

Results

Both single cell and local field of potential activity of the DG was analyzed to

assess the development of signals during the cue intervals, and how these signals

related to recalling learned sensory cues to gain a reward. From a total of 229 recorded

cells in the dentate gyrus, 190 were identified as putative granule cells (session average

firing rate <3Hz) and 27 were identified as putative inhibitory cells (session average

firing rate >6Hz).
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Spectrogram show distinct rhythmic activity during cues

We found that during the cue (odor sampling) interval, prior to reward, several

frequency bands changed their contribution to the local field potential. We observed a

shi� to decreased contributions by theta (5-10Hz) and very high gamma (75-115Hz)

following the initiation of an odor sampling interval. Beta (15-35Hz), low gamma

(35-50Hz), and high gamma (50-70Hz) exhibited a shi� to increased contributions to the

local field potential in the same interval (Fig. 1a).

The signals for each rhythm of interest appear to return to baseline levels

following cessation of the cue then increase again during reward consumption (Fig. 1b).

This indicates the signals associated with the cue interval are distinct from those

observable from the reward interval.

Two factor repeated measures ANOVAs were used to test for significant

differences between the time from initiation of the nose poke, the contribution of an

amplitude envelope to a specified frequency band of the spectrogram, and outcome on

the associative memory task (Fig. 1c, Fig. 1d). Across six 250ms time bins following the

nose poke, we found a significant difference in the development of each rhythm

observable in the spectrograms (Table 1a). Additionally, there was a main effect for

outcome (correct or incorrect) for both theta (5-10Hz) and very high gamma (75-115Hz)

frequency bands  (Table 1a). The mean of theta and the mean very high gamma band

activity was significantly greater during incorrect outcomes than correct (Table 1a) but
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no significant differences were observed between outcomes for each individual time

bins for either rhythm (Table 1a; S1).

Repeated Measures
ANOVA TimeBins 1-6

Repeated Measures
ANOVA
OutcomeCorrect vs Incorrect

Repeated Measures
ANOVAtime*outcome

Theta (5-10Hz)
Muachly test of sphericity
indicated sphericity was
violated for time and
outcome with a
Greenhouse-Geisser Epsilon
of 0.35819 for time, 0.54058
for time*outcome.
Thus, we corrected for the
sphericity violation by using
Greenhouse-Geisser
calculation when examining
within subject effects.

Uncorrected

d.f. = 5, F= 29.98,
p<0.00001

Greenhouse-Geisser
d.f=1.79094, F=29.98

p<0.00001

d.f. = 1, F= 10.55,
p=0.00257

Greenhouse-Geisser
d.f.=2.70288, f=0.4500,
p=0.69778 n.s.

Beta (15-35Hz) d.f. = 5, F= 58.92,
p<0.00001

d.f. = 1, F=2.082,
p~=0.16, n.s.

Low Gamma (35-50Hz) d.f. = 5, F= 21.81,
p<0.00001

d.f. = 1, F = 2.121,
p=0.15, n.s.

High Gamma (50-70Hz) d.f. = 5, F= 8.787,
p<0.00001

d.f. = 1, F = 0.5947,
p=0.45, n.s.

Very High Gamma (75-115Hz)
Muachly test of sphericity
indicated sphericity was
violated for time and
outcome with a
Greenhouse-Geisser Epsilon
of 0.53628 for time, 0.67994
for time*outcome.

d.f. = 5, F= 35.64,
p<0.00001

Greenhouse-Geisser
d.f.=2.68141,
F=35.64, p<0.00001

d.f. = 1, F = 4.170,
p=0.0487

Greenhouse-Geisser
d.f.=3.39972, f=1.644, p=0.18
n.s.
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Thus we corrected for the
sphericity violation by using
Greenhouse-Geisser
calculation when examining
within subject effects.

Table 1a. Summarized results for two factor repeated measures ANOVAs conducted

at each frequency band, for six 250ms time bins beginning at the initiation of nose

poke, between correct and incorrect memory task performance. If there was a

significant effect of outcome and time, we also examined time*outcome interactions.

Pairwise Bonferroni TestCorrect Vs Incorrect

Theta (5-10Hz) d.f.=35, t=4.8919, p<0.00003, incorrect
mean=0.12682, correct mean=0.11778

Very High Gamma (75-115Hz) d.f.=35, t=3.0544,  p=0.00429, incorrect
mean=0.04258, correct mean=0.04173

Table 1b. Pairwise statistics for interactions between shi�s in contribution of given

rhythms to LFP during cue intervals and associative memory task performance.

Mean amplitude for theta and very high gamma were significantly lower for cue

intervals which predicted correct associations
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Figure 1a: Normalized average spectrogram for all correct trials. Frequency bands

identified to fluctuate in response to the initiation of the odor sampling cue interval are

boxed and labeled.
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Figure 1b: Extension of figure 1a with a simplified color axis. A rat would select one of

the odor ports at the 0 second mark by poking its nose in the port. Odor would be

released 250ms later, odor sampling would be maintained for 1.5 seconds, then, the rat

would begin licking up the reward (on average) at the 1.9 seconds mark.
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Figure 1c: Expansion of figure 1b with beta (15-35Hz) outline and time bin overlays.

Figure 1d: Example single trial LFP (blue) and amplitude envelope (red) which

contributed to the beta band of the amplitude spectrogram and was used in two

factor repeated measures ANOVA.
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Cell spike-phase coherence correlate with task performance

For each rhythm identified to dynamically change over the nose poke interval,

we tested if unique engagement of putative granule cells, or unique engagement of

putative inhibitory cells, to the specified rhythm during the cue interval was predictive

of performance on the associative memory task. Of cells identified to have significant

spike phase preferences for each rhythm, we categorized them depending on if these

phase preferences were unique to correct, incorrect, or irrespective of trial outcome.

For putative granule cells with significant spike phase relationships (N=69, 36 sessions

with each half session analyzed separately, 5 rats, see materials and methods) we found

coherence predicted correct trial performance for all rhythms excluding high gamma

(Fig. 2a; Table 2a). Of putative inhibitory cells with significant spike phase relationships

(N=27, 36 sessions with each half session analyzed separately, 5 rats, see materials and

methods), we found only beta and high gamma coherence was predictive of

performance (Fig 2b; Table2b), though firing rate differences may have skewed these

results for the putative inhibitory population for all rhythms of interest besides beta.
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χ2correct v incorrect v all χ2correct v
incorrect

Bonferoni
corrected P
value=0.0167

χ2correct v all

Bonferoni
corrected P
value=0.0167

χ2incorrect v
all

Bonferoni
corrected P
value=0.0167

Theta
(5-10Hz)

(2, N=28) = 24.5,
p<0.00001

(1, N=28) = 7,
P=0.00815

(1, N=21) = 21,
p<0.00001

(1, N=7) = 7,
P=0.00815

Beta
(15-35Hz)

(2, N= 16)~= 16.6 ,
P=0.00025

(1, N=15)~=
8.07 ,
P=0.00451

(1,
N=14)~=10.3,
P=0.00134

(1,
N=3)~=0.334,
P~=0.56 N.S.

Low
Gamma
(35-50Hz)

(2, N=15)~=14.8,
P=0.00061

(1, N=14)~=
7.14, P=0.00753

(1, N=13)~=
9.31, P=0.00228

(1, N=3)~=
0.334 , P~= 0.56

N.S.

High
Gamma
(50-70Hz)

(2, N=8 ) =  7, P=
0.03019

(1, N=2) = 2,
P~=0.16

N.S.

(1, N=6) = 6,
P=0.01430

(1, N=2) =2 ,
P~=0.16

N.S.

Very High
Gamma
(75-115Hz)

(2, N=42 ) = 13,
P=0.00150

(1, N=34) ~=
7.53, P=0.00606

(1, N=33) ~=
8.76, P=0.00308

(1, N=17) ~=
0.059, P~=0.81
N.S.

Table 2a. Chi Squared Tests for significant differences in proportion of putative

granule cells coherent to a given rhythm for a given condition. (N.S. not significant)
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χ2correct v incorrect v all

P<0.05

χ2correct v incorrect

Bonferoni
corrected P
value=0.0167

χ2correct v all

Bonferoni
corrected P
value=0.0167

χ2incorrect v all

Bonferoni
corrected P
value=0.0167

Theta
(5-10Hz)

(2, N=48) =42,
p<0.00001

(1, N=12) = 12,
P<0.00054

(1, N=48) = 12,
P<0.00054

(1, N=36) = 36,
p<0.00001

Beta
(15-35Hz)

(2, N= 38)~= 20.9,
P<0.00025

(1, N=25)~=
21.2, p<0.00001

(1,
N=37)~=3.27,
P=0.070546
N.S.

(1,
N=14)~=10.3,
P=0.00134

Low
Gamma
(35-50Hz)

(2, N=23)~=4.52,
P~=0.10

N.S.

(1, N=20) = 0.2,
P~=0.65

N.S.

(1, N=12) = 3,
P~=0.08

N.S.

(1, N=14)~=
4.57, P~= 0.03

N.S.

High
Gamma
(50-70Hz)

(2, N=41)~=  16.7,
P<0.00023

(1, N=25) =
17.64,
P<0.00003

(1, N=39)~=
1.26, P~=0.26
N.S.

(1, N=18)
~=10.9,
P<0.00097

Very High
Gamma
(75-115Hz)

(2, N=49)~= 28.2,
p<0.00001

(1, N=19) = 19,
P=0.00001

(1, N=49)~=
2.47, P~=0.12

N.S.

(1, N=30) = 30,
p<0.00001

Table 2b. Chi Squared Tests for significant differences in proportion of putative

inhibitory cells coherent to a given rhythm for a given condition. (N.S. not

significant)
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Figure 2a: Proportion of putative granule cells which exhibited coherence to each

rhythm of interest per outcome. (n.s. p=>0.0167; * p<=0.0166; ** p<=1E-3; ***

p<=1E-4)
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Figure 2b: Proportion of putative inhibitory cells which exhibited coherence to each

rhythm of interest per outcome. (n.s. p=>0.0167; * p<=0.0166; ** p<=1E-3; ***

p<=1E-4)

Effects of interval firing rate on validity of spike phase relationships

Since firing rates in phase-modulated cells can bias estimates of spike-phase

coherence strength, we determined whether firing rate differences between correct

and incorrect trials could explain the differences in selective coherence. No significant

differences in nose poke interval firing rates could be observed between coherent

putative granule cells during correct and incorrect trials (Fig 3a; Table 3 (le�)). Thus
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engagement by putative granule cells across outcomes was not biased by firing rate

differences of the cells in each outcome.

In contrast, firing rates during nose poke intervals for putative inhibitory cells

coherent to each respective rhythm of interest differed significantly across correct and

incorrect outcomes (Fig 3b; Table 3 (right)).  A decrease in coherence during an interval

could be due to significantly lower firing rates during that interval. Of the putative

inhibitory cells with beta coherence, a significantly greater proportion of cells were

only coherent during correct trials. However, this ʻcorrect onlyʼ population had a

significantly lower interval average firing rate. Thus, the lack of inhibitory cell

engagement during the nose poke interval associated with incorrect trials only is not a

function of firing rate difference between the intervals. For the cells coherent to all

other rhythms of interest, all populations exhibited the opposite trend, indicating the

need for further investigation into the validity of the rayleigh statistic used to assess

spike phase coherence.

Overall differences in interval firing rate between correct and incorrect trials

All putative granule cells and putative inhibitory interneurons which fired

during either correct or incorrect intervals were pooled, then their firing rates were

compared across cue intervals corresponding to correct and incorrect trials. Putative

granule cells did not have a significantly different firing rate depending on the

corresponding outcome (Wilcoxon signed rank test Z=-0.119 P=0.904

MedianCorrect=0.0970, MedianIncorrect=0.0833). Putative inhibitory interneurons did
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however, exhibit significantly different firing rates during the cue interval depending

on the corresponding outcome, with a trend towards greater firing during incorrect

trials (Z=-3.474, P=0.00051, MedianCorrect=8.2758, MedianIncorrect=9.2182).

Wilcoxon signed-rank test

Correct Vs Incorrect

Putative Granule cells (<3Hz)

Wilcoxon signed-rank test

Correct Vs Incorrect

Putative Inhibitory interneurons (>6Hz)

Theta
(5-10Hz)

Z=-0.818, P~= 0.41 n.s. Z=-3.705, P=0.00021, MedianCorrect=8.7521,
MedianIncorrect=10

Beta
(15-35Hz)

Z=-1.206, P~=0.23 n.s. Z=-3.589, P=0.00033, MedianCorrect=8.5421,
MedianIncorrect=10

Low Gamma
(35-50Hz)

Z=N/A, P~=0.55 n.s. Z=-3.220, P=0.00128, MedianCorrect=8.8468,
MedianIncorrect=10.9090

High Gamma
(50-70Hz)

Z=-0.879,  P~=0.38 n.s. Z=-3.342, P=0.00082, MedianCorrect=10.7508,
MedianIncorrect=8.7364

Very High
Gamma
(75-115Hz)

Z=N/A,  P~=0.36 n.s. Z=-2.646 P=0.00814, MedianCorrect=8.3636,
MedianIncorrect=9.7142

Table 3. Wilcoxon signed-rank test for significant differences in firing rate of cells

coherent to each rhythm during nose poke intervals predicting correct or incorrect

associative memory task performance. If a significant difference was found, median

firing rate for each category was also reported.
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Fig 3a. Average firing rate of coherent putative granule cells during nose poke

intervals associated with correct trial vs those associated with incorrect trials, for

each rhythm of interest, for neurons which exhibited significant spike phase

relationships during either correct or incorrect trials.

Fig 3b. Average firing rate of putative inhibitory cells during nose poke intervals

associated with correct trial vs those associated with incorrect trials, for each

rhythm of interest, for neurons which exhibited significant spike phase relationships

during either correct or incorrect trials.
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Discussion:

During the odor cue interval, we observed shi�s in contribution of the multiple

frequency bands to the local field potential: theta (5-10 Hz), beta (15-35 Hz), low gamma

(35-50 Hz), high gamma (50-70 Hz) and very high gamma (75-115 Hz). These shi�s could

reflect the modulation of circuit activity during the cue interval. Further, as we

observed cessation of these rhythmic signals with cessation of the odor cue prior to the

reward interval, the circuits they may be reflective of engaging are likely to disentangle

in function to those previously associated with reward consumption (Sasaki et al.,

2018).  We also observed modulation of two of these rhythmic signals in a manner

predictive of associative memory performance.

Theta (5-10 Hz) and very high gamma (75-115 Hz) frequency bandsʼ mean

amplitude decreased during odor cue intervals which corresponded to correct

performance on the associative memory task. Theta, and to a lesser extent gamma,

hippocampal oscillations have previously been positively correlated with motor activity

and indirectly related to associative memory processes (Trimper et al., 2017; Zheng et

al., 2016; Ahmed & Mehta, 2012). However, decreases in theta power have also been

independently associated with approaching a choice point associated with a potential

reward outcome. As such, it has been suggested a decrease in theta is reflective of a

behavioral state several 100ms in the future, and is a ʻreadiness signalʼ (Wyble et al.,

2004). Other research has shown cue dependent decreases in theta coupled with

increases in beta in response, regardless of the valence of the associated outcome.
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Additionally, observed theta-beta interaction did not occur in response to cessation of

movement alone (Rangel et al., 2015). While we did not find a unique increase in beta

with the cessation of theta correlated with cue intervals which predicted correct

associations, theta may have still acted as a ʻreadiness signal. Our results may indicate

that this ʻreadiness signalʼ may be a scalable factor for the permission of neurons to

engage in circuits crucial for mnemonic processing.

Some studies have suggested that very high gamma is generated by parvalbumin

positive (PV+) inhibitory interneurons (Mann & Paulsen, 2007; Sohal et al., 2009;

Towers et al., 2001). Computational models of DG circuitry (Estarellas, 2016) suggest

LTP along the preferent path (such as what may occur especially strongly with

repetition of learned conjunctive object-spatial cues for an associative memory) could

reduce activation of the PV+ inhibitory interneurons. It s̓ possible that during

exemplary associative memory processing of a given set of associative cues, a dentate

circuit which had been previously modified --through the above steps-- for given these

cues is reengaged, leading to a down regulation of PV+ interneurons and inturn, a

downregulation of the very high gamma band. This aligns with our observed decreased

firing rate of putative inhibitory interneurons during cue intervals which predicted

correct trials. In contrast, we did not observe any significant differences in firing rate of

putative granule cells. While the lack of outcome dependent firing rates in putative

granule cells may decrease the plausibility of the hypothesis built on Estarellas 2016

model -- that stronger LTP from repeated sensory inputs on granule cells from repeated
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experience of associative cues will induce changes in the circuit which ultimately lead

to reduced feedforward inhibition, greater firing rates of putative granule cells, and

improved associative memory processing -- more investigation is needed to determine

relationship between what each putative granule cells specifically encoded and their

firing rate changes. However, we did find dramatic differences in spike phase

preferences of putative granule cells between correct and incorrect associative memory

task performance.

For all rhythms besides high gamma, we observed a significantly greater

proportion of putative granule cells exhibiting significant spike phase relationships

during cue intervals corresponding to correct trials only. These results were not

modulated by firing rate suggesting that when these putative granule cells fire may be

drastically more important for associative memory processing than how o�en they fire.

Thus, shi�s in circuit dynamics of the dentate gyrus play a major role in associative

memory processing.

Limitations:

While we are reasonably confident that the >6Hz population represented

primarily inhibitory interneurons and the <3Hz population represented primarily

granule cells, a less proportion of the 3Hz population may have also included mossy

cells and to an even lesser extent, inhibitory interneurons. Literature on firing rate of

each cell type is extremely limited and at times at odds with itself (Kim et al., 2020; Jung

et al. 2019; Estarellas et al., 2019; Senzai & Buzuki, 2017). Without optogenetic and
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histological techniques, we can not say for certain the structural cell types contained

within each population.

Future directions:

It is possible that the convergence of multiple sensory inputs to single granule

cells is responsible, in part, for our observed results. A conjunctive neural code which

integrates each unique combination of sensory cues to predict a given outcome could

be a powerful and efficient tool in our task. Such a code would be a powerful and

efficient tool not just for associative memory, but also many of the other mnemonic

processes frequently attributed to the DG (i.e. pattern separation (Aimone et al., 2011;

Rangel et al., 2014; Leutgeb et al., 2007; Neunuebel & Knierim 2014), novelty detection

(Dees and Kesner, 2013), binding (Lee & Jung, 2017; OʼReilly & Rudy, 2001;)). Put simply,

it becomes easier to discriminate between sets of sensory information when all aspects

of each experience are considered.

Similar temporal conjunctive encoding mechanisms have been observed in

other hippocampal subregions such as CA1. For instance, Rangel and colleagues found

CA1 beta coherent principal cells exclusively coded conjunctive information, as

opposed to information about odor or position alone (Rangel et al, 2016). Considering

how disruption of preforant paths from entorhinal cortices to DG but not other

hippocampal subregions effects memory tasks that would benefit from such a code, its

possible that DG generates a more distinctive conjunctive code from CA1 or that a

proportion of conjunctions observable in CA1 originate in DG.
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Furthermore, previously in vivo electrophysiological recordings in the rat DG

have shown that single granule cells can demonstrate distinct firing rate patterns for

similar spatial environments (Leutgeb et al., 2007; Neunuebel, J. P. & Knierim, J. J.,

2014), and that distinct populations of active cells can encode temporal differences

between environments (Rangel, L. M. et al., 2014). Similar events within a given

spatiotemporal context or the same event in similar spatiotemporal contexts might

then be represented very differently at the single cell level in DG through cells that are

highly selective for specific event and context associations. 

Mechanistically, the combined sensory inputs and unique circuitry of DG may be

crucial for such a feat. Computational models (Estarellas, 2016), which have been

supported by transgenic experiments and in vitro studies (Estarellas et al., 2019),

suggest that as LTP occurs along the perforant path and between the DG cell types, a

net depression of feed-forward inhibition is temporarily experienced by granular cells.

This could lead to circuits exhibiting patterns of small, highly specific, temporal

windows corresponding to decreased signal transduction of the parvalbumin (PV+)

inhibitory interneurons, alterations in timing of granule cell firing, and a circuit which

is more uniquely tuned to transmit their signal. Proximally timed inputs from the

perforant pathways, driven by object spatial conjunctions, could stimulate granule cells

with greatest intensity and thus direct the relatively large sums of LTP. Consequently, a

positive feedback mechanism would engrain only the most temporally coordinated and

commonly occurring non-spatial-spatial conjunctions. This would result in a highly
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distinct set of conjunctions being encoded shi�s in circuit dynamics, observable

through spike phase relationships. Potentially, the same spike phase relationships weʼve

identified in this study.

Further investigation into the potential of conjunctive encoding properties of the

putative granule cells identified to exhibit spike phase relationships for correct

outcomes will be the next step in testing these theoretical predictions.
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Pairwise Bonferroni Test
Theta (5-10Hz)Correct Vs Incorrect

Pairwise Bonferroni Test
Very High Gamma
(75-115Hz)Correct vs Incorrect

0-250ms from nose poke d.f.=175, t=1.52989, p=1
n.s.

d.f.=175, t=0.18626, p=1
n.s.

250-500ms from nose poke d.f.=175, t=1.37543, p=1
n.s.

d.f.=175, t=0.1012, p=1 n.s.

500-750ms from nose poke d.f.=175, t=2.18286, p=1
n.s.

d.f.=175, t=1.55124, p=1
n.s.

750-1000ms from nose
poke

d.f.=175, t=2.18286, p=1
n.s.

d.f.=175, t=1.55124, p=1
n.s.

1000-1250ms from nose
poke

d.f.=175, t=2.44537, p=1
n.s.

d.f.=175, t=2.53616, p=1
n.s.

1250-1500ms from nose
poke

d.f.=175, t=2.26631, p=1
n.s.

d.f.=175, t=1.75791, p=1
n.s.

S1. Pairwise statistics examining interaction effects for each time bin following

initiation of the odor sampling interval



Rhythmic dynamics of associative memory Heyman 38

References

Ahmed, O. J., & Mehta, M. R. (2012). Running speed alters the frequency of hippocampal

gamma oscillations. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 32(21), 7373–7383. https://doi.org/10.1523/JNEUROSCI.5110-11.2012

Aimone, J. B., Deng, W., & Gage, F. H. (2011). Resolving New Memories: A Critical Look at the

Dentate Gyrus, Adult Neurogenesis, and Pattern Separation. Neuron, 70(4), 589–596.

https://doi.org/10.1016/j.neuron.2011.05.010

Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: fundamental

neuroanatomical organization Progress in brain research, 163, 3–22.

https://doi.org/10.1016/S0079-6123(07)63001-5

Bibbig, A., Traub, R. D., and Whittington, M. A. (2002). Long-range synchronization of gamma

and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network

model. J. Neurophysiol. 88, 1634–1654. doi: 10.1152/jn.00064.2002

Buckmaster, P. S., & Schwartzkroin, P. A. (1995). Interneurons and inhibition in the dentate

gyrus of the rat in vivo. Journal of Neuroscience, 15(1 II), 774–789.

https://doi.org/10.1523/jneurosci.15-01-00774.1995

Buzsáki G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 68(3),

362–385. https://doi.org/10.1016/j.neuron.2010.09.023



Rhythmic dynamics of associative memory Heyman 39

Cannon, J., McCarthy, M. M., Lee, S., Lee, J., Börgers, C., Whittington, M. A., & Kopell, N.

(2014). Neurosystems: brain rhythms and cognitive processing. The European journal

of neuroscience, 39(5), 705–719. https://doi.org/10.1111/ejn.12453

Dees, R.L., Kesner, R.P., The role of the dentate gyrus in object and object-context recognition,

Neurobiol. Learn. Mem. 106 (2013) 112–117.

Eichenbaum, Howard (2015). The advantages of large scale neural recording: Revealing the

organization and dynamics of cognitive maps. [Conference presentation]. Society for

Neuroscience 2015, Chicago, IL, United States. https://youtu.be/8GiFY8As9Mg

Estarellas, C., Mirasso, C. R., & Canals Gamoneda, S. (2019). Inhibitory Gating in the Dentate

Gyrus. http://hdl.handle.net/10261/218196

Estarellas, C. M. (2016). Modeling the Entorhinal Cortex - Dentate Gyrus Circuit [UNIVERSITAT

DE LES ILLES BALEARS].

https://ifisc.uib-csic.es/media/publications/publication/vyrBqjjXQ5elA0bkQJ3XzA.pdf\

Fernández-Ruiz, A., & Oliva, A. (2016). Distributed representation of “what” and “where”

information in the parahippocampal region. Journal of Neuroscience, 36(32),

8286–8288. https://doi.org/10.1523/JNEUROSCI.1581-16.2016

Hunsaker, M. R., Mooy, G. G., Swi�, J. S., & Kesner, R. P. (2007). Dissociations of the Medial and

Lateral Perforant Path Projections Into Dorsal DG, CA3, and CA1 for Spatial and

Nonspatial (Visual Object) Information Processing. Behavioral Neuroscience, 121(4),

742–750. https://doi.org/10.1037/0735-7044.121.4.742



Rhythmic dynamics of associative memory Heyman 40

Jung, D., Kim, S., Sariev, A., Sharif, F., Kim, D., & Royer, S. (2019). Dentate granule and mossy

cells exhibit distinct spatiotemporal responses to local change in a one-dimensional

landscape of visual-tactile cues. Scientific reports, 9(1), 9545.

https://doi.org/10.1038/s41598-019-45983-6

Kesner, R. P. (2018). An analysis of dentate gyrus function (an update). Behavioural Brain

Research, 354(February 2017), 84–91. https://doi.org/10.1016/j.bbr.2017.07.033

Kim, S., Jung, D., & Royer, S. (2020). Place cell maps slowly develop via competitive learning

and conjunctive coding in the dentate gyrus. Nature Communications, 11(1), 1–15.

https://doi.org/10.1038/s41467-020-18351-6

Kopell, N., Ermentrout, G. B., Whittington, M. A., and Traub, R. D. (2000). Gamma rhythms and

beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. U.S.A. 97,

1867–1872. doi: 10.1073/pnas.97.4.1867

Kopell, N., Kramer, M. A., Malerba, P., & Whittington, M. A. (2010). Are different rhythms good

for different functions? Frontiers in Human Neuroscience, 4(November), 1–9.

https://doi.org/10.3389/fnhum.2010.00187

Lee, J. W., & Jung, M. W. (2017). Separation or binding? Role of the dentate gyrus in

hippocampal mnemonic processing. Neuroscience and Biobehavioral Reviews, 75,

183–194. https://doi.org/10.1016/j.neubiorev.2017.01.049



Rhythmic dynamics of associative memory Heyman 41

Leutgeb, J. K., Leutgeb, S., Moser, M. B., & Moser, E. I. (2007). Pattern separation in the dentate

gyrus and CA3 of the hippocampus. Science (New York, N.Y.), 315(5814), 961–966.

https://doi.org/10.1126/science.1135801

Mitra P., Bokil H. (2008). Observed Brain Dynamics Observed. Brain Dynamics: Oxford

University

Morris, A. M., Weeden, C. S., Churchwell, J. C., & Kesner, R. P. (2013). The role of the dentate

gyrus in the formation of contextual representations. Hippocampus, 23(2), 162–168.

https://doi.org/10.1002/hipo.22078

Neunuebel, J. P., & Knierim, J. J. (2014). CA3 retrieves coherent representations from degraded

input: direct evidence for CA3 pattern completion and dentate gyrus pattern

separation. Neuron, 81(2), 416–427. https://doi.org/10.1016/j.neuron.2013.11.017

OʼReilly, R. C., & Rudy, J. W. (2001). Conjunctive representations in learning and memory,

principles of cortical and hippocampal function. Psychological Review, 108, 311–345.

Pinto, D. J., Jones, S. R., Kaper, T. J., and Kopell, N. (2003). Analysis of state-dependent

transitions in frequency and long-distance coordination in a model oscillatory cortical

circuit. J. Comput. Neurosci. 15, 283–298. doi: 10.1023/A:1025825102620

OʼReilly, R. C., & Rudy, J. W. (2001). Conjunctive representations in learning and memory,

principles of cortical and hippocampal function. Psychological Review, 108, 311–345.



Rhythmic dynamics of associative memory Heyman 42

Rangel, L. M., Alexander, A. S., Aimone, J. B., Wiles, J., Gage, F. H., Chiba, A. A., & Quinn, L. K.

(2014). Temporally selective contextual encoding in the dentate gyrus of the

hippocampus. Nature Communications, 5(1), 3181. https://doi.org/10.1038/ncomms4181

Rangel, L., Chiba, A., & Quinn, L. (2015). Theta and beta oscillatory dynamics in the dentate

gyrus reveal a shi� in network processing state during cue encounters  . In Frontiers in

Systems Neuroscience  (Vol. 9, p. 96).

https://www.frontiersin.org/article/10.3389/fnsys.2015.00096

Rangel, L. M., Rueckemann, J. W., Riviere, P. D., Keefe, K. R., Porter, B. S., Heimbuch, I. S.,

Budlong, C. H., & Eichenbaum, H. (2016). Rhythmic coordination of hippocampal

neurons during associative memory processing. ELife, 5.

https://doi.org/10.7554/eLife.09849

Rolls, E.T. (1996), A theory of hippocampal function in memory. Hippocampus, 6: 601-620.

https://doi.org/10.1002/(SICI)1098-1063(1996)6:6<601::AID-HIPO5>3.0.CO;2-J

Sasaki, T., Piatti, V. C., Hwaun, E., Ahmadi, S., Lisman, J. E., Leutgeb, S., & Leutgeb, J. K. (2018).

Dentate network activity is necessary for spatial working memory by supporting CA3

sharp-wave ripple generation and prospective firing of CA3 neurons. Nature

neuroscience, 21(2), 258–269. https://doi.org/10.1038/s41593-017-0061-5

Senzai, Y., & Buzsáki, G. (2017). Physiological Properties and Behavioral Correlates of

Hippocampal Granule Cells and Mossy Cells. Neuron, 93(3), 691–704.e5.

https://doi.org/10.1016/j.neuron.2016.12.011



Rhythmic dynamics of associative memory Heyman 43

Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma

rhythms enhance cortical circuit performance. Nature, 459(7247), 698–702.

https://doi.org/10.1038/nature07991

Towers, S. K., LeBeau, F. E., Gloveli, T., Traub, R. D., Whittington, M. A., & Buhl, E. H. (2002).

Fast network oscillations in the rat dentate gyrus in vitro. Journal of neurophysiology,

87(2), 1165–1168. https://doi.org/10.1152/jn.00495.2001

Trimper, J. B., Galloway, C. R., Jones, A. C., Mandi, K., & Manns, J. R. (2017). Gamma

Oscillations in Rat Hippocampal Subregions Dentate Gyrus, CA3, CA1, and Subiculum

Underlie Associative Memory Encoding. Cell reports, 21(9), 2419–2432.

https://doi.org/10.1016/j.celrep.2017.10.123

Verret, L., Mann, E. O., Hang, G. B., Barth, A. M., Cobos, I., Ho, K., Devidze, N., Masliah, E.,

Kreitzer, A. C., Mody, I., Mucke, L., & Palop, J. J. (2012). Inhibitory interneuron deficit

links altered network activity and cognitive dysfunction in Alzheimer model. Cell,

149(3), 708–721. https://doi.org/10.1016/j.cell.2012.02.046

Wyble, B. P., Hyman, J. M., Rossi, C. A., & Hasselmo, M. E. (2004). Analysis of theta power in

hippocampal EEG during bar pressing and running behavior in rats during distinct

behavioral contexts. Hippocampus, 14(5), 662–674. https://doi.org/10.1002/hipo.20012

Zheng, C., Bieri, K. W., Hwaun, E., & Colgin, L. L. (2016). Fast Gamma Rhythms in the

Hippocampus Promote Encoding of Novel Object-Place Pairings. eNeuro, 3(2),

ENEURO.0001-16.2016. https://doi.org/10.1523/ENEURO.0001-16.2016


