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Abstract

Navigation is critical among different species such as rodents, monkeys, and humans

because the brain is capable of taking in information of directional actions and projects into a

distributed spatial navigational network. Parietal cortex neurons, which are a part of the network,

are able to map our location on a route based on directional actions (linear and angular speeds).

By taking into account the current LS and AS, some parietal cortex neurons can determine what

direction the rat was going at that time, as well as the rat's location along the route. Additionally,

rather than only reflecting the rats’ behavior at the present time, neurons in the parietal cortex

can encode information across a short period of time referred to as an integration window. To

explore how the integration window could potentially change when the rat was trained on a

complex setting which replicate the real world environment, we examined the self-motion tuning

in the parietal cortex of rats when they performed a Triple-T spatial working memory task. The

parietal cortex neurons are tuned to angular and/or linear speeds. Many self-motion sensitive

neurons in the parietal cortex are able to integrate information through a longer temporal window

on the given task. Thus some neurons are able to encode the past, present, and future of

self-motion in the rat posterior parietal cortex.



Introduction

Navigation is a critical cognitive ability for almost any species. It requires spatial

cognition in the form of awareness of location and orientation of oneself relative to the

environment. Furthermore, the available pathways through an environment are constrained by

obstacles and/or are dictated by pathways such as roads.

The hippocampus (HPC), entorhinal cortex (EC), and anterior thalamus have been

proposed to encode location and orientation. The posterior parietal cortex (PPC) has been

proposed to encode both self-motion (linear and angular velocity) and route position.

The Hippocampus and the Place Cells

In 1976, John O'Keefe discovered that place cells in the HPC of an animal can

specifically fire for a certain location of the animal in an environment. The firing activity of a

place cell will not change even in specific conditions such as: the platform where the animal is

located on within a room is rotated, or the light is off during the experiment (O’Keefe, 1976).

The specific location where the neuron shows a maximal firing activity or tuning is called a

“place field.” Different place cells have different firing activity and different place fields. The

place field of a single place cell will change if the environment is changed. For example, if the

rat is moved from one room to another room, the original place field which the neuron was tuned

to will change to another location. The finding of place cells in the HPC supported the proposed

theory of a “cognitive map” and spatial mapping in the brain. The “cognitive map” was

originally proposed by Edward Tolman in 1951. Tolman stated that the way rats or humans

navigate through different environments was related to the spatial map in the brain being used as

an internal system guiding our behavior when navigating through the external environment

(Tolman, 1951).

The Head Direction Cells

Another type of cell that contributes to the idea of spatial mapping are the head direction

cells. The head direction cells were first discovered by James B. Ranck Jr in the postsubiculum,

(the output region of the HPC) which encodes the animal’s head direction, irrespective of the

animal’s location, behavior, and their trunk position (Taube, J. S. el al., 1990). Later on, the head

direction cells were also found in several other brain regions including the medial entorhinal



cortex (MEC), the anterior thalamus, and the retrosplenial cortex (RSC) (Fyhn et al., 2004,

Hafting et al., 2005, JS Taube, 1995, Cho, J., 2001).

The Entorhinal Cortex

In addition to the HPC, the EC also contributes to the “cognitive map”. In the medial

entorhinal cortex (MEC), information on position, direction, and self-motion integrates together

as revealed by a grid pattern (Fyhn et al., 2004, Hafting et al., 2005). Each grid cell has multiple

firing fields that together are able to form a special grid pattern; with each firing field having

equal distance to another. Some grid and head direction cells in the MEC show overlapping

firing activity; specifically, certain grid cells are also tuned to certain head directions, and they

both are modulated by the animal's speed (Sargolini, F., 2006).

There is another type of cell in the MEC that interacts with the grid and head direction

cells: the border cells. The border cells have firing fields along the edge of walls (Solstad, T.

2008). The firing field of the border cells is also maintained and will stretch along with the edge

of the wall if it were to be stretched. Unlike the place cell, the firing field of the border cell will

not change its location if the environment is changed (Solstad, T. 2008). Thus, the border cell

could serve as a reference to the external environment and integrate the information from place

cells, head direction cells, and the grid cells together to form the cognitive map in the brain.

The Parietal Cortex

The parietal cortex is another region involved in spatial navigation. The neurons in the

PPC have action correlates to the animal’s locomotion (left turn, right turn, or straight motion). It

was first discovered by McNaughton, B. L., et al., (1994). The evidence in their study

demonstrated that  action correlates can be modulated by different spatial contexts or the internal

body representation of self motion through the space (McNaughton, B. L., et al., 1994). Nitz,

D.A., (2006) found a different pattern of the firing activity in the PPC neurons observed through

an experiment. The firing activity of the PPC neurons is related to how the route is ordered, not

taking into account the place or direction of the animal relative to its environment. Before diving

into these “route” cells, there are few ways I will define a route. It can be simply defined by the

overall shape of the route. A route can also be defined as a series of set locations or a series of

direction actions along the route. The firing activity of these PPC neurons, or “route” cells, is

https://www.cell.com/fulltext/S0896-6273(06)00127-9#
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aligned with the shape and the space defined by the route. That is, there is a population of

neurons that seem to be encoding the shape of the route itself (Nitz, D.A., 2006).

Frames of Reference

When referring to the firing activity of the above-mentioned types of neurons, there are

several frames of reference generally used by neuroscientists: the abstract frame of reference

such as the “egocentric” frame of reference, and arbitrary frame of reference, which includes

“allocentric,” “object-centered” , and “route-centered” frames of reference. In the “egocentric”

frame of reference, we usually process the stimulus relative to our own body such as the retina,

hands, or the trunk. The term “allocentric” refers to anything else other than self. The

“object-centered” frame of reference is usually used to describe parts of the object relative to its

whole.  When we refer to an object or one’s location relative to the route, we use the

“route-centered” frame of reference. In general, neurons in the HPC take an allocentric frame of

reference. That means that the firing activity of the HPC neurons is more sensitive to where in

the environment an animal is rather than what the self is doing.

PPC is positioned anatomically to regions of the brain with neural responses in both

egocentric frames of reference (Mohan et al., 2018) and allocentric frames of reference

(Whitlock, J. R., et al., 2018; LaChance, P. A. et al., 2022; Sugar, J., et al., 2011). PPC is also

known to integrate information over time (Whitlock, Jonathan R., et al. 2011; Alexander, A. S.,

et al., 2022). PPC neurons have shown to be action-correlated in some studies in which they

encode specific self-motion (left or right turns) or acceleration at present and up to 500ms in

advance (Chen et al., 1994; Whitlock et al., 2012). Additionally, PPC neurons have been

proposed to integrate past, present, and future of an animal's self-motion for up to 2 seconds in

the past and 2 seconds in the future in unstructured environments (Alexander et al., 2022). The

PPC neurons are able to respond to more complicated tasks by encoding self-motion of the rat

for a longer period of time.

Integration of Self-Motion

In the most recent study on PPC neurons, Alexander et al. (2022) found that neurons in

the PPC can encode the past, present, and future of self-motion within a certain temporal

window. The setting of the study has two conditions. The first condition is free foraging. The



data was collected when the animal was freely running in an open arena in search of rewards. In

another condition (i.e. pursuit condition), the data was collected when the animal was chasing a

laser pointer. The laser always followed a certain shape so the rat could learn through training.

Results show that under both conditions, certain PPC neurons are tuned to encode the

rats’ past route behavior. For instance, if the rat made a left turn up to 2 seconds in the past, the

tuned PPC neuron would encode that information. Other specialized PPC neurons will encode

information if, for example, the rat would make a right turn in the next 2 seconds. Assuming that

the rat is currently running straight, specialized PPC neurons will fire for the route in present

time, however the above mentioned PPC neurons will fire for the past and future respectively at

the same time. This means that these three types of PPC neurons work together to encode for the

whole time frame for past, present, and future of self-motion. In addition, the time frame is larger

under the laser-light chasing condition when the animal was trained to follow a certain shape.

The setting for the experiment done by Alexander et al. (2022) was an open arena, but

this provides an insight into the route-specific firing activity of the PPC neurons. A possible

explanation is that all the neurons together encode route positions from past to future. Knowing

this, a neuron will not fire for all right or left turns because the past or future of the turning action

is different even within one route.

Therefore, the purpose of this research is to seek the explanation regarding the

route-specific firing activity of neurons in the PPC. Our world is well-structured, the path we

walk everyday is formed by barriers and obstacles. We are able to navigate through this complex

environment and memorize the whole structure with little to no difficulty. Therefore, in this

study we used a well-structured environment - a Triple-T maze to assess the similarity and

difference of neural firing activity when the animal performed spatial working memory tasks

with different environmental contexts. In addition, we will also be looking at the integration

window when the PPC neuron encodes the past, present, and future of the rat's self-motion under

this condition. We hypothesize that the integration window will be larger than when the animal

was trained on the unstructured environment, which means that the PPC neurons are able to

integrate more information over a longer time when the animal was trained on a well-designed

maze. Therefore studying PPC in this environment, and analyzing these data in this way should

reveal interesting results with regard to frames of reference and integration of self-motion from

past to the near future.



Results

Rats performed a spatial working memory task on a Triple-T maze

5 rats were trained to perform a spatial working memory task on a “Triple-T” maze

(Figure 1). In each trail, the rat is trained to navigate through 1 of 4 internal paths to collect its

reward at the reward site. Along the internal paths, there are 3 sequential turning points that the

rat could freely choose to either turn left or right. The rewards at the reward sites were 1/4

cheerios each. The rat was required to complete a find-all-four task before the reward sites got

reset by researchers. After collecting the reward, the rat could freely choose either one of the two

external paths that surrounded the internal paths to return back to the starting point.

This task would require the rat to remember for longer durations of time where they have

been and where they plan to go. Through the training, the rats were able to navigate the maze

with high speeds going in one direction.

The whole experiment consisted of 67 recording sessions. In order to better understand

the neuron firing activity regarding rats behavior on the maze, we selected the behavioral data

where the rat was on internal paths (from start point to the reward site) or external paths (from

reward sites back to the starting point).

Rats displayed high proficiency on the spatial working memory task as they are able to

navigate through the maze without any stop or hesitation in the middle of the track. Rats Also

regularly display perfect blocks (Figure 2, median perfect blocks percentage = 0.5625, IQR =

0.4534 – 0.6799). This demonstrates that they were able to create a sense of the structure of the

maze as well as the history and future plan of their actions.

The firing activity of some parietal cortex is modulated by the sequence of actions

Based on the finding from Alexander et al. (2022), the firing activity of some populations

of parietal cortex neurons can be modulated by the sequence of actions. That is, the neuron not

only responds to the rat’s current behavior, but also reflects its past or future behavior. We

assessed if the finding from Alexander et al. (2022) is also applicable to the Triple-T task.

First we looked at the rate map of each neuron, which shows how each neuron responded

to the rat’s behavior when it navigated on the Triple-T task (Figure 3, left). Additionally, for each

neuron we also plotted linearized activity for each path (Figure 3, right).



Based on the rate map and linearized rate map of each neuron, we found expected firing

activity of each neuron regarding the rat’s actions (linear and angular speeds). The firing fields of

PPC neurons are not consistent or stereotyped to certain actions, such as firing strongly for

turning L or turning R or firing strongly for running straight. We observed that some neurons

exhibited high firing rate for some left/right turning actions but not every single turning L or

turning R.

Self-motion tuning curve of PPC neurons

Self-motion tuning curves were made for each PPC neuron recorded. In order to assess

the neuron firing activity when the animals performed the spatial working memory task, we

recorded 5 rats using in vivo electrophysiology when the animals performed the task on the

maze. 236 neurons were recorded from the posterior parietal cortex (n = 5 rats, n = 67

extracellular recording sessions). We calculated the linear and angular velocity tuning curves for

all PPC neurons (n = 236 cells).

Each recorded neuron in the parietal cortex displayed slightly different tunings to linear

and/or angular speeds. Some neurons that are tuned to high linear speed also displayed tuning to

low angular speed as the rat was running straight with high speed on the maze. Neurons that are

tuned to high angular speed also display tuning to medium to low linear speed.  (Figure 4, n =

236 cells).

PPC neurons display heterogeneous tunings to angular velocity

In order to understand the tuning of linear and angular speeds among the neuron

population in the parietal cortex, we sorted 236 cells by their maximum firing rate in responding

to angular and linear speed. The angular speed tuning curves of all neurons were sorted from the

farthest left turn action to the farthest right turn action. The population of linear speed tuning

curves were sorted from 0 to 60 cm/s (Figure 4).

Based on the population tuning curve, the feature of the population linear speed tuning

curve is similar to the graph from Alexander et al. (2022). These graphs demonstrate that one

parietal neuron is usually tuned to a certain linear speed. Additionally, within the population,

those neurons together can reflect rats’ linear speed from lowest to highest.



However, the population angular speed tuning curve is different from what Alexander et

al. (2022) proposed in their study. The population of PPC neurons displays an unexpected

heterogeneous firing activity to self-motion. Remarkably, while performing the triple-T task,

many individual PPC neurons encoded angular velocity for turning L and for turning R.

By comparing the tuning curve and linearized activity profile for each neuron, we noticed

a discrepancy between the tuning of the neurons and where in space they fired on the Triple-T

maze. This result aligned with the finding from Alexander et al. (2022), which indicated that

PPC neurons are able to integrate self-motion across time. Therefore, instead of only assessing

PPC neurons' firing activity based on present behavior, we also considered the past and future

behavior of the animals and its impact on the neural firing activity of the PPC.

The PPC neuron maintains a relatively consistent tuning across seconds

In order to test the temporal integrative properties, we followed the method Alexander et

al. (2022) used in their paper by shifting the spike train relative to the fixed angular and linear

velocity. This shifted tuning curve would reveal if the neurons were preferentially tuned to

self-motion that occurred in the past or future.

If the spike train is shifted retrospectively, or back in time with a better tuning, it would

suggest that the neuron is tuned to the rat’s past (retrospective) behavior. If the neuron displays a

better tuning when the spike train is shifted forward relative to the fixed angular or linear speeds,

it suggests that the neuron is tuned to the rat’s anticipatory behavior.

In the study done by Alexander et al. (2022), they shifted the spike train 2 s backward

and forward. However, in our study we shifted the spike-train for 15 seconds into the past and 15

seconds into the future. The reason we choose 15 seconds in particular is because it takes a rat

about 8-10 seconds to run a traversal. With a 15 seconds shifted spike train, we are able to cover

more than one traversal in order to cover the entire route. After generating time-lagged tuning

curves for all neurons (n = 236), we found that some neurons surprisingly maintained a relatively

consistent tuning across seconds with history and future dependent firing (Figure 7. Linear

speed: mean = 4.35 seconds; Angular speed: mean = 3.69 seconds).

Dbscan



After we generated time-lagged tuning curves, we noticed that the tuning was consistent

across seconds. Therefore, we assessed the temporal window of the tuning of linear and angular

speed by using Dbscan in order to understand the temporal relationship between neural firing

activity and behavior.

What we found was that most neurons displayed more than one consistent tuning cluster

from dbscan results (n = 171/236 for AV time-lagged tuning; n = 202/236 for LV time-lagged

tuning). In addition, among neurons who displayed more than one tuning cluster, the range and

the time-lag of the peak of the central peak cluster was calculated for each neuron that met the

criteria (Figure 5). AV: n = 63/171, mean time-lag of the central peak = -0.48s, std = 1.62s;

median = +0.3s, IQR = -1.57 – +0.62). Based on the results from dbscan, preferred latencies for

angular speed are slightly skewed retrospectively, reflecting the past behavior of the animal. The

temporal window of integration is longer than Alexander at el. (2022) found in the study

(dbscan: mean = 5s).

With the limitations of dbscan, we did not find significant results for linear speed and its

relationship with neural firing activities.

Self-motion decoding is accurate for extended temporal window in a well-structured environment

Building upon what we found previously, the evidence for the path integration was

established by decoding the neural spiking activity and making a prediction on the animal’s

speed. We used a neural decoding toolbox (Meyers, 2013; http://www.readout.info/), which takes

the spike train of a neuron and uses an algorithm to predict the animals’ speed. The output is the

accuracy of the prediction.

In order to test the decoder accuracy when the spike train is shifted relative to the linear

and angular speeds, we shifted the spike train of each neuron 15s into the past and 15s into the

future and decoded self-motion. If the decoding accuracy increased when we shifted the spike

train backwards, this implicated that the neural firing rate was more correlated with past

behavior. If the decoding accuracy increased when we shifted the spike train forwards, the neural

firing rate was more correlated with the future behavior (Alexander et al., 2022).

First, we tested the validity of the decoding toolbox on the linear speed decoding

accuracy as well as the distribution of preferred latency regarding the linear speed. The reason

we tested this is that due to the computer capacity and capability, the computer was not able to

http://www.readout.info/


handle the heavy workload of using the decoding toolbox to predict the rat’s angular speed.

Therefore, we used half of the recording data to test the preferred latency on angular speeds. By

testing the validity, the decoding toolbox can predict the rat’s linear and angular speeds (Figure

XX, Rho = 0.273 with even higher correlation value near the time-lag 0). This is significant

based on the bootstrapping results.

The results show that neurons over the course of a few seconds are responding to linear

and angular speed in a reliable way. The integration window was assessed by calculating the

half-width of the central peak of all neurons (n = 236 cells, LV: mean = 4.08s, std = 1.37s, AV:

mean = 4.44s, std = 1.44s).

The decoding accuracy curve from our study shows an expanded integration window and

more peaks (Figure 9). The integration window is longer than the pursuit condition from

Alexander et al. (2022). This indicates that in a complex environment, the integration window is

longer when the rat performs a complex task. Additionally, there are more peaks in the decoding

accuracy curve when rats perform a Triple-T task (Figure 9). In order to make sense of these

results, we need to acknowledge that the tuning can be as complicated as it can be, as long as it

can be predictable.

In addition, the preferred latency of linear speed tuned neurons showed tight distribution

compared to angular speed tuned neurons (Figure 8). These parietal neurons displayed a larger

range of the preferred latency than the data from Alexander et al. (2022).

Discussion

In reality, rats and humans often move through space along a line or pathway in a well

structured environment. We developed a task that puts the rat in this context. In our experiment,

we used a triple-T maze with embedded complex pathways and we had a working memory task

for the rats. We demonstrated (1) the action tuning of PPC neurons to linear and/or angular

speeds, (2) a path integration across time, and (3) a longer temporal integrative window in the

parietal cortex.

Through long history of studying the parietal cortex, neurons in the PPC displayed

action-correlated tuning and route-specific firing activity (Chen et al., 1994; Whitlock et al.,

2012; Wilber et al., 2014; Wilber et al., 2017; Nitz, 2006, Nitz, 2012). Consistent with some



studies from the past, some populations of the PPC neurons were tuned to linear and/or angular

speeds in the Triple-T task (Whitlock et al., 2012; Alexander et al., 2022). When we looked at

the firing activity of PPC neurons to angular speeds, we found that many individual PPC neurons

surprisingly encoded angular velocity for turning left and right when the rat performed the

triple-T task. By looking at the population tuning curves of linear speeds, we found that each

neuron is tuned to one specific linear speed, which is consistent with the finding from previous

study (Whitlock et al., 2012; Alexander et al., 2022). This tuning to two different turning

behaviors adds to our understanding of the role PPC plays in motor planning by suggesting that

more generalized forms of egocentric motion are being encoded upstream of the more specific

types of egocentric coding seen in supplemental motor cortex (Olson & Johnson et al. (2021),

and motor cortex (Pruszynski et al., 2007).

In addition, the significance of path integration is it could potentially help us understand

how a system that is very sensitive to angular and linear speeds can end up with route-specific

activity. Some neurons in the parietal cortex are not only sensitive to left/right turns but the

position of that left/right turn. This means that serious of actions may be important. In other

words, positions in a route can change the action tuning of the PPC neurons because the parietal

cortex is able to map locations in a route (Nitz, 2006; Alexander et al., 2022).

In the parietal cortex, we also found that those neurons can integrate the past, present, and

future of self-motion, which has been proposed from the past (Alexander et al., 2022). We

followed the same method Alexander et al., (2022) used in their paper and found evidence that

supports self-motion integration. The distribution of the preferred latencies for linear speed is

narrower compared to the angular speed. Both displayed bias to retrospective tuning, which

supports the finding of Alexander et al., (2022) and contrasts to some previous findings of

primarily anticipatory responses in the parietal cortex (Moor et al., 2017; Whitlock et al., 2012).

Additionally, based on the distribution of preferred latencies which define the integration

window, it is broader than the previous reports (Alexander et al., 2022). The integration window

of each PPC neuron is also assessed. From the previous study, the extended integration window

of self-motion was observed during pursuit conditions because the linear and angular speeds

were maintained for longer temporal duration (Alexander et al., 2022). Evidence for longer

self-motion integration in even more complex tasks (triple-T task) supports the idea that the



tuning of PPC neurons could potentially adapt to new tasks or more complex environments when

the spatial working memory task is heavier.

Conclusion

In conclusion, there is a path integration in the parietal cortex across time in a

well-structured space. The structured environment appears to support the parietal cortex encodes

of actions across a long period of time. It also aids the ability of the PPC to integrate information

across a longer time window. Parietal cortex is capable of integrating trajectories across fairly

long time periods (many seconds) in a way that contributes to the performance of this complex

triple-T task.

Limitations of the study

There are some limitations in this study. First, there is no direct comparison between

triple-T task and free foraging, which then could not provide any in-depth evidence or support on

adaptation of self-motion tuning in the parietal cortex. Future study could consider recording the

firing activity of the same parietal neuron when the rat was performed on both structured maze

and open platform. In addition, with the limited capacity of my computer, we have to cut the

recording into first and second half in order to use the neural decoding toolbox.

Although we have not done this in the current study, a future direction could address how

the integration window can change for neurons in the parietal cortex. Another possibility for the

future would be to investigate what kinds of network connectivity is required for some neurons

that reflect the past, present and future of self-motion.

Methods

The following data is from Olson & Johnson et al. (2021). The methods for generating

and analyzing tuning curves are based on Olson & Johnson et al. (2021) and Alexander et al.

(2022).

Subjects



The subjects for this study include 5 rats. The data was previously recorded with

implanted microdrives targeting the PPC dorsal and dorsal-CA1 region of each rat’s brain. The

rats had dietary restrictions to maintain 85 - 95% of their normal weight for motivation purposes.

Apparatus

Triple-T maze

The triple-T maze is a custom built platform by graduate students in Professor Nitz’s lab,

which is made of black plastics with a thin sheet layer on top acting as tracks. The overall

dimension of the environment (recording room) is 4m x 6m. The maze is 20cm off the ground.

The outer bounds of the maze is 2cm so the rat can see the room which contains distal visual

cues.

Working memory task

The task is to navigate through internal tracks of the maze to the food rewarded points. In

this experiment, there are four rewarded sites located at another long edge of the maze. The

reward is manually delivered by the experimenter in every block. The rat is trained to start at the

middle of the long edge of the maze. At the center of each “T”, the animal is able to freely make

a choice of turning right or left. Therefore, with different options of turning right or left, the

difference between each path are the action sequence as well as the location and shape of the

path itself. The spatial working memory task is relatively simple. By beginning at the starting

points, the rat is required to navigate through the internal paths to the reward site without turning

back in the middle. The rat would receive rewards when re-visiting a rewarded site only after

collecting all other rewards.

After collecting the reward, the animal can freely choose to turn right or left in order to

return back to the starting point.

Surgery

Each rat has 4-12 tetrodes implanted inside them, made with 17μm polyimide-insulated

nickel-chromium. Those tetrodes are twisted and stored in a custom built microdrive placed on

each rat’s skull. The surgery was performed when the rat was under isoflurane anesthesia.



Neural and Behavioral Recordings

After surgery recovery, the rat was trained again for one week on the maze with the same

tasks as before the surgery and recording. The data used for analyses are all from well-trained

rats.

Neural recording

Each microdrive is connected to an amplifier through electrical interface boards. Signals

are amplified (50x) and filtered through a high pass filter (>150 Hz). The signal is then processed

by the Plexon SortClient software, filtered at 0.45 - 9k Hz, and amplified 1-15x in addition to the

50x amplified signal. The Plexton OfflineSorter software is then used to discriminate single

neurons from waveforms. After identifying single neurons from groups of cells and removing

artifacts, the data will then be processed by MATLAB for further analysis.

Behavioral recording

LED lights (red and blue) were attached to the center of the animal's head on the

microdrive. During the recording, the lighting of the environment is dim. The camera, which is

hung up on the ceiling 2.6m above the floor, can then capture the animal's position as well as the

relative orientation of its head to its trunk. The light was captured at 60 Hz. The angular linear

velocity and the animal’s head direction are calculated based on the angle between the two lights.

The angle is 0° when the animal is facing the “room north” direction.

Histology

After completing all  recordings, the rats were perfused under deep anesthesia. Brains

were dissected and sliced into thin layers. Nissl stains were applied to the brain slide in order to

reveal the accurate location of each electrode.

Analyses

Behavior assessment

Each recording session was around 45 minutes. The data of the animal's behavior was

captured by camera and sent to the computer as a digital video tracking profile. All the labeling



for the recording sessions as well as discrimination of different routes were done on MATLAB.

The data was then processed by several pre-programmed MATLAB functions: the behavior

scoring helps identify and label the beginning and the end of each route; the ratemapper

generates the neural spike train as well as the animal's angular, linear velocity and head direction.

In this study, all data is from Olson & Johnson et al. (2021).

Construction of self-motion tuning curves

The self-motion tuning curve was constructed for every recorded neuron according to

Olson & Johnson et al. (2021) and Alexander et al. (2022). For each recording session, the linear

velocity is discretized into 29 bins ranging from 0 to 50 cm/s. The angular velocity is discretized

into 32 bins ranging from -30 to 30 degree/sec. The data used here is cropped so only the portion

of the recording when the animal is physically on the route will be analyzed. Next, we computed

1000 tuning curves of linear and angular velocities. The minimum occupation time at each bin

was identified. We then randomly sub-sampled all possible neuron spiking activities at each

binned speed to match the minimum occupation time minus 1 second (so there will be variability

when sampling the data). All tuning curves are calculated as the mean of 1000 sub-sampled

tuning curves. The null tuning curve for each neuron was then calculated by the following

method: the spike train was randomly shifted 100 times relative to the fixed behavior (linear and

angular velocity). Tuning curves were calculated for each of the 100, then the mean of those

values were obtained for the null tuning curve.

Then we bootstrapped the tuning curves for each neuron by comparing the null tuning

curve with the original tuning curve in order to assess if the neuron firing activity is significant.

A neuron tuning curve is significant only if the value of each bin on the tuning curve outside the

range of the threshold range (mean +/- 3 standard deviations of the 100 null tuning curves for

one neuron)

Construction of shifted self-motion tuning curves

In order to understand the firing activity of PPC neurons, we also generated shifted

self-motion tuning curves of linear and angular velocities for each neuron. Instead of only

computed tuning curves at the present time (at 0 lag), we shifted the spike train from -15s to 15s

in 100ms increments relative to a fixed behavior in order to assess the temporal relationships



between neural spiking activity and its behavior. When we shifted the spike train backward

relative to the behavior, it reflected the animals past behavior (history-dependent) because the

spiking activity occurred after the behavior. When we shifted the spike train forward relative to

behavior, it reflected the animals future behavior (anticipatory) because the spiking activity

occurred before the behavior.

Identifying the central peak of each shifted self-motion tuning curve

In each shifted self-motion tuning curve graph, the peak and valley bin was identified as

greater or lesser than 99th percentile of the distribution of the reliability score. All percentile

tasks were done by comparing the real tuning curve with the randomized (null) tuning curve

described above. The central peak was defined as a group of bins marked as 1 and the central

valley was marked as -1. Then the data was processed by ‘dbscan’ (MATLAB function) to

identify each central peak or valley.

Decoding of self-motion

Decoding of self-motion for each neuron was conducted using smCorrDecoder, an

implementation of the NDT (Neural Decoding Toolbox) maximum correlation coefficient

classifier by Alexander et al. (2022) from the Neural Decoding Toolbox (Meyers, 2013;

http://www.readout.info/). The temporal resolution of spike train and behavior were matched

(60Hz) for all given neurons (n = 236). The spike train of each neuron was smoothed using a

Gaussian filter with a 200 ms standard deviation. Then the spike train was separated into 50%

training and 50% testing blocks. The training block of the spike train and corresponding behavior

vector was used by the smCorrDecoder to train the classifier. The classifier learned the mean

population vector of the training block as a template. The testing block was then tested by the

classifier. When the classifier was tested, the correlation coefficient value was assessed between

the testing block and templates of each class (speed). The largest correlation coefficient value

returned as an output along with the predicted behavior.

Decoding of self-motion with the shifted spike train

To understand the temporal relationship between behavior and neural firing activity, we

also conducted analyses on decoding of self-motion with the shifted spike train for each neuron

http://www.readout.info/


according to Alexander et al. (2022). Instead of shifting the spike train from -2 s to +2 s in

100ms increments (Alexander et al. (2022)), the spike train was shifted from -15 s to +15 s in

100ms increments (301 bins in total) relative to the fixed behavior (linear and angular velocity).
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Figures

A. B.

Figure 1. A (Olson & Johnson et al. (2021). B. An illustration of the triple-T maze and the

spatial working memory task.

Figure 2. Distribution of the perfect block chance.



Figure 3. The rate-map and the linearized rate-map for neuron 61. (Left: Rate map; Right:

Linearized rate map)

Figure 4. Neuronal tuning curves of the parietal cortex. Left: Neuron 61; Right: Neuron 5.



Figure 4. Distribution of the self-motion tuning curve. A: max normalized AV turning curve

(ordered by the degree the neuron is tuned from left (-180) to right (180)) degree/sec. B: the same

neuron order as A but it is a population LV tuning curve. C: max normalized LV turning curve

(ordered by the degree the neuron is tuned from low (0) to high (50)). D: the same neuron order

as C but it is a population AV tuning curve.



Figure 5. Distribution of time-lag of AV central peaks.



Figure 6. Distribution of time-lag of central peak. Up left: the time lag of LV central peak from

first-half of the data. Down left: the time lag of LV central peak from the second-half of the data.

Right: correlation of the LV central peaks between the first and second half of the data.

Figure 7. Distribution of the integration window. Up: Distribution of AV integration window.

Down: Distribution of LV integration window.



Figure 8. Distribution of central peaks. Up: distribution time-lag of AV central peaks. Down:

distribution of time-lag of LV central peaks.

Figure 9. Decoding accuracy latency curve for LV (neuron 61).


