
UNIVERSITY OF CALIFORNIA, SAN DIEGO

DEPARTMENT OF COGNITIVE SCIENCE

BACHELOR’S THESIS

Mental Simulation with Self-Supervised
Spatiotemporal Learning

Author:
Kevin Tan

Supervisors:
Dr. Zhuowen Tu,

Dr. Virginia de Sa,
Kwonjoon Lee

Machine Learning, Perception, and Cognition Lab (mlPC)

June 2019

http://pages.ucsd.edu/~ztu/

i

Abstract

Mental simulation – the capacity to imagine objects and scenes in order to make de-
cisions, predictions, and inferences about the world – is a key feature of human cog-
nition. Evidence from behavioral studies suggest that representations of visual im-
agery are spatial and sensitive to the causal structure of the world. Inspired by how
humans anticipate future scenes, we aim to leverage state-of-the-art techniques in
deep learning and computer vision to tackle the problem of spatiotemporal predic-
tive learning in a self-supervised manner. We perform explorations across three ar-
chitectural design choices: (i) the importance of 2D-convolution vs. 3D-convolution
inside the cell of recurrent neural networks, (ii) the effectiveness of residual con-
nections in stacked long short-term memory models for remembering spatial infor-
mation over long time horizons, and (iii) the balance between l1 norm and l2 norm
components in the objective function. Our extensive evaluations demonstrate that
finetuning with residual connections achieves state-of-the-art performance on the
Moving MNIST and KTH Action benchmark datasets. Potential application areas
include weather forecasting, traffic flow prediction, and physical interaction simula-
tion. Our source code is made available online 1.

1https://github.com/kevinstan/video_prediction

https://github.com/kevinstan/video_prediction

ii

Acknowledgements

I would like to thank my research advisor, Professor Zhuowen Tu, for his guidance,
support, and giving me a chance in the first place. I also thank Kwonjoon Lee, Yifan
Xu, Wenlong Zhao, Haoyu Dong, and the rest of the Machine Learning, Perception,
and Cognition Lab for valuable insights and discussions. I am indebted to Professor
Virginia de Sa for accepting me as an undergraduate teaching assistant, for connect-
ing me with IBM Research as a summer intern, and for her advice on applying to
graduate school. I also thank Shuai Tang, who gave a great deal of assistance in
running final experiments. I am grateful for the support from Shawn Hsu and Luca
Pion-Tonachini during my time at SCCN. I appreciate the partial financial support
from the Halıcıoğlu Data Science Institute Undergraduate Scholarship. Last, but far
from least, I thank my girlfriend Emma Huang and my parents Hong and Jamie Tan
for their love and support.

iii

Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Artificial Neural Networks . 3

2.1.1 Architecture . 3
2.1.2 Learning Procedure . 4

Gradient Descent . 4
Adam Optimizer . 5
Batch Normalization . 5

2.2 Convolutional Neural Networks . 6
2.2.1 Convolutional Layer . 6

2.3 Long Short-Term Memory for Sequence Modeling 7
2.4 Spatiotemporal Predictive Learning . 8

2.4.1 Convolutional LSTM . 8
2.4.2 PredRNN . 9
2.4.3 Eidetic 3D LSTM . 10

2.5 Deep Residual Learning . 11
2.6 Mental Representations of Visual Imagery 11

3 Implementation 13
3.1 E3D-LSTM Hyperparameters . 13
3.2 Residuals Setup . 13
3.3 Loss Function . 14

4 Experiments 15
4.1 Experiment 1: Moving MNIST Dataset 15

4.1.1 Results . 15
4.2 Experiment 2: KTH Action Dataset . 17

4.2.1 Results . 17
4.3 Discussion . 18

5 Conclusion 19
5.1 Summary . 19
5.2 Future Work . 19

Bibliography 20

1

Introduction

Mental simulation is a phenomenon in which people can manipulate objects and
scenes in their imagination in order to make predictions and inferences about the
world. How do humans have the intuitive ability to perform mental simulation,
and how can we develop machines capable of doing the same?

In recent years, artificial intelligence has seen tremendous progress in application
areas such as image processing and natural language understanding due to exciting
breakthroughs in deep learning. We’ve seen the emergence of computer programs
capable of beating world-class chess players, driving autonomous vehicles, and gen-
erating their own creative writing. To say progress has been remarkable would be
an understatement; yet, it still stands that the best existence proof of intelligence is
in fact human intelligence. Today’s machines, and in particular those that attempt
to predict the visual future, still struggle to replicate the complexity and capabilities
of visual mental imagery in humans.

Recent state-of-the-art models in spatiotemporal video prediction have been in-
spired by theories of mental representation. But the heated debate on representa-
tions of visual imagery (Kosslyn, 1994) has not yet reached a resolution since its
inception in cognitive psychology. On the one hand, we have analog, or depictive,
representations that make explicit and accessible the shape and the relations be-
tween shape and other percetual qualities (e.g. color and texture), as well as spatial
relations among each point. On the other hand, we have propositional representa-
tions which posit that the format of mental images are symbolic similar to natural
language descriptions or executable programs. Recent advancements such as Con-
vLSTM (Shi et al., 2015), PredRNN (Wang et al., 2017), and Eidetic 3D LSTM (Wang
et al., 2019) are all inspired by representations of the first kind of representations:
analog.

To tackle the problem of instilling machines with the capacity for visual imag-
ination demands a crossdisciplinary approach from a variety of fields including
computer science, machine learning, cognitive psychology, neuroscience, and phi-
losophy. Doing so successfully will prove fruitful in a twofold manner: (1) by en-
gineering more intelligent systems with visual understanding inspired by cognitive
science, and (2) by shedding light on the computational algorithms of mental simu-
lation and the debate on the nature of visual representations. The aim of this thesis
is to study (1) as a means of achieving (2). We implement our approach of the Eide-
tic 3D LSTM with deep residual connections to study the problem of spatiotemporal
predictive learning as a computational analog to mental simulation. We then explore
a number of architectural design choices and evaluate our approach on two bench-
mark datasets.

Chapter 1. Introduction 2

The rest of this thesis is structured as follows. Chapter 2 begins with a review
of modern deep neural networks and training techniques, followed by an overview
of recent spatiotemporal predictive learning models, concluding with short digres-
sions on deep residual learning and theories of mental imagery. Chapter 3 explicates
the implementation details of our approach. Chapter 4 reports the experimental re-
sults on two benchmark datasets and gives a brief discussion and analysis. Finally,
the conclusion summarizes the contributions and gives a brief overview of future
directions.

3

Background and Related Work

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs), also known as connectionist systems, are com-
puting architectures that inspired by, but not identical to, the biological neural net-
works in human and animal brains (McCulloch and Pitts, 1943). The connections
between neurons are called edges, and the signal of the connection is represented by
a signal of a real number in most implementations. The output of each artificial neu-
ron is computed by a non-linear function of the sum of its inputs. Typically, edges
are associated with a weight that adjusts as the learning procedure occurs, in which
weights are updated to reflect the strength of the signal at a connection.

2.1.1 Architecture

Neural network models consist of two components: (i) the network architecture
which defines how many neurons, how many layers, and how the neurons are con-
nected, and (ii) the parameters, or weights, of the connections. Deep architectures
refer to models constructed by a series of many layers in which each layer learns
to transform its input data into a slightly more abstract and higher-level representa-
tion. Units are organized into L layers, where the first layer that gets fed the input
is called the input layer, and the last layer yielding the predicted values is called the
output layer. The intermediate layers are called hidden layers.

FIGURE 2.1: An ANN is an interconnected group of nodes, inspired
by a simplification of neurons in the brain. Arrows represent the in-
formation flow in the feedforward direction from the input layer to

output layer.

Chapter 2. Background and Related Work 4

The activation of the layer a(l) is expressed as:

z(l) = W(l−1)a(l−1) a(l) = g
(

z(l)
)

(2.1)

where z(l) is the weighted sum of the inputs of each unit in the layer, upon which the
non-linearity activation function g is applied, yielding a(l) for layer l. Common non-
linearities include sigmoid and hyperbolic tangent. It has been shown that with the
correct choice of activation function, ANNs are able to approximate any continuous
function in a compact subset of Rn, making them universal approximators (Hornik,
1991).

2.1.2 Learning Procedure

Training examples x(i) are fed forward layer by layer starting with the input layer.
The actual output is compared with the target output via an objective function which
measures the difference between them. The weights are learned through the back-
propagation algorithm, which is an efficient way of computing gradients using the
chain rule from calculus and dynamic programming techniques (Rumelhart, Hinton,
and Williams, 1986). Training stops when the magnitude of error change reaches un-
der a certain threshold known as the stopping condition.

Gradient Descent

To perform the backward error propogation in order to update the weights, the gra-
dient descent algorithm or variants of it are commonly used. Gradient descent mini-
mizes an objective function J

(
θ, x(i), y(i)

)
parameterized by θ ∈ Rd which measures

the distance between predicted and true targets. Batch gradient descent computes
the gradient of the objective function with respect to the parameters of the entire
training dataset. In contrast, Stochastic gradient descent (SGD) computes the gradi-
ent for only one example and performs a parameter update for each training exam-
ple one at a time.

The update rule is given by:

θ = θ− η∇θJ
(

θ, x(i), y(i)
)

(2.2)

where

∇θJ
(

θ, x(i), y(i)
)
=


∂J(θ,x(i),y(i))

∂θ1
...

∂J(θ,x(i),y(i))
∂θd

 (2.3)

and η ∈ R is known as the learning rate. It is common in practice to use Mini-Batch
gradient descent, which takes a mini-batch of n examples and computes the gradient
from those examples:

θ = θ− η∇θJ
(

θ, x(i:i+n), y(i:i+n)
)

(2.4)

Chapter 2. Background and Related Work 5

Adam Optimizer

Adaptive Moment Estimation (Adam) (Kingma and Ba, 2014) is an optimization algo-
rithm (similar to RMSProp (Tieleman and Hinton, 2012) and Adadelta (Zeiler, 2012))
that computes adaptive learning rates for each parameter, and has been shown to
work well in practice and empirically outperforms other adaptive learning algo-
rithms.

Adam stores an exponentially decaying average of past squared gradients vt but
also an exponentially decaying average of past gradients mt, as follows:

mt = β1mt−1 + (1− β1) gt

vt = β2vt−1 + (1− β2) g2
t

(2.5)

where β1 is the decaying coefficient for the running average of the gradient (typi-
cally 0.9) and β2 is the decaying coefficient for the running average of the squared
gradient (typically 0.999).

Then the bias-corrected estimates are computed as:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.6)

to yield the Adam update rule:

θt+1 = θt −
η√

v̂t + ε
m̂t (2.7)

Batch Normalization

Batch normalization is a technique for accelerating training and improving the speed,
performance, and stability of ANNs. It was initially proposed to solve internal co-
variate shift (Ioffe and Szegedy, 2015). The central idea is normalize the input to a
layer by adjusting and scaling the activations. Using a mini-batch of examples, a
neuron x in the pre-activation output of a layer is normalized by:

x̂ =
x− E[x]√

Var[x]
(2.8)

where the resultant mean and variance are zero and one, respectively.

In order not to lose the representational power of the network due to normaliza-
tion, two more parameters are introduced (for each neuron in the network): γ, β that
can "undo" the normalization:

y = γx̂ + β (2.9)

As a result, batch normalization introduces many benefits: allowing a substan-
tially larger learning rate for training without exploding gradients, reducing the
need for dropout layers by helping regularize the network, and being more robust
to different initialization schemes.

Chapter 2. Background and Related Work 6

FIGURE 2.2: A ConvNet arranges its neurons in three dimensions (width,
height, depth) as visualized in one of the layers. Every layer of a ConvNet
transforms its 3D input volume to a 3D output volume of neuron activa-
tions. The red layer denotes the input image, with width and height as
its dimensions, and depth of 3 corresponding to red, green, blue (RGB)

channels.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (Lecun et al., 1998) are a special class of deep
ANNs that contain one or more convolutional layers. They are designed to work
well for image processing based on their shared-weights architecture and transla-
tional invariance characteristics.

Contrary to traditional multilayer perceptrons (MLP), CNNs have the following
distinguishing features1:

1. Local connectivity: Since it is impractical to connect neurons in each layer
to all the neurons in the previous layer’s output when working with high-
dimensional inputs such as images, neurons are instead connected to only local
regions. The local spatial size of the receptive field is a hyperparameter, and
the depth is always equal to the depth of the input volume.

2. Shared weights: To control the number of learnable weights, CNNs make the
assumption that if it is useful to compute features learned at one spatial loca-
tion (x1, y1), then it is also useful to compute features learned at another spatial
location (x2, y2).

There are three main types of layers used to build ConvNet architectures: Con-
volutional Layer, Pooling Layer, and Fully-Connected Layer. In this thesis, we focus
on the Convolutional Layer, and – in particular – the differences between 2D and 3D
convolutions.

2.2.1 Convolutional Layer

The convolutional layer is the core building block of a CNN that does most of the
computation. The layer’s parameters consist of a set of learnable kernels which typ-
ically have a small receptive field emulating the response of an individual neuron to
visual stimuli. The kernels extend the full depth of the input volume. During the
forward pass, each kernel is convolved across the input, computing the dot product
and producing feature maps of that kernel. As a result, the kernel learns to activate
when detecting a particular feature, invariant of the spatial location in the input.

1http://cs231n.github.io/convolutional-networks/

Chapter 2. Background and Related Work 7

FIGURE 2.3: The repeating module in an LSTM contains four inter-
acting components: cell, input, output, and forget. Yellow boxes
denote neural network layers, pink circles denote pointwise opera-
tions, and black arrows denote the flow of vector information. Source:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

2.3 Long Short-Term Memory for Sequence Modeling

Long Short-Term Memory (LSTM) is a special case of a recurrent neural network
(RNN) architecture that has proven to be more stable and powerful in modeling de-
pendencies over long-range temporal horizons (Graves, 2013; Hochreiter and Schmid-
huber, 1997). LSTM networks were developed to deal with the exploding and van-
ishing gradient problem that can commonly be encountered when training tradi-
tional RNNs; consequently, they are well-suited for sequence modeling tasks based
on time series data. RNN architectures have the property of forming a chain of re-
peating modules of neural networks. In LSTM networks, the recurrent module is
composed of a cell, an input gate, an output gate, and a forget gate. The cell remem-
bers values over arbitrary time intervals and the three gates regulate the information
flow as input to and output from the cell.

The major innovation of LSTM is the innovation of the memory cell ct that accu-
mulates state information over time. New inputs will be accumulated into the cell
state if the input gate it is activated. The previous cell state ct−1 could be "forgotten"
if the forget gate ft is activated. The updated cell output is ct is controlled by out-
put gate ot to determine whether it is propogated into the hidden state ht. Multiple
LSTMs can be stacked in the vertical direction and temporally concatenated to form
more complex architectures.

The key equations are given by (2.10) where ’◦’ denotes the Hadamard product:

it = σ (Wxixt + Whiht−1 + Wci ◦ ct−1 + bi)

ft = σ
(
Wx f xt + Wh f ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ tanh (Wxcxt + Whcht−1 + bc)

ot = σ (Wxoxt + Whoht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh (ct)

(2.10)

Chapter 2. Background and Related Work 8

2.4 Spatiotemporal Predictive Learning

Shi et al., 2015 has proposed the following scenario for spatiotemporal predictinve
learning. Suppose we are observing a video clip represented by P measurements
over time, where each measurement (e.g. RGB channel) is recorded at all locations
in a spatial region represented by an MxN grid representing the dimensions of a
video frame. From the spatial view, the observation of these P measurements at any
point in time can be represented by the tensor X ∈ RPxMxN . From the temporal
view, the observations over T steps form a sequence of tensors X1,X2, ...,XT. From
a machine learning perspective, the problem of spatiotemporal prediction can be
seen as a sequence forecasting problem. The goal is to predict the most probable
length-K sequence in the future given the previous length-J sequence including the
observation at the current time step:

X̂t+1, . . . , X̂t+K = arg max
Xt+1,...,Xt+K

p (Xt+1, . . . ,Xt+K|Xt−J+1, . . . ,Xt) (2.11)

In the context of video generation, the measurements are three RGB channels, and
the observation at each time step is a 3D tensor (H, W, C) where H and W are the
height and width of the frame respectively, and C is the number of channels.

2.4.1 Convolutional LSTM

The Convolutional LSTM (ConvLSTM) (Shi et al., 2015) is able to model spatiotem-
poral sequences by simultaneously encoding the spatial information into tensors,
overcoming the limitation of standard LSTM where spatial memory is lost. In the
context of ConvLSTMs, all the inputs X1, ...,Xt, cell outputs C1, ..., Ct, hidden states
H1, ...,Ht, and gates it, ft, gt, and ot are 3D tensors in RPxMxN , where the first di-
mension represents either the number of measurements (in the case of inputs) or the
number of feature maps (for intermediate representations), and the last two dimen-
sions represent the spatial dimensions of the frame (e.g. M rows and N columns).
One may imagine inputs and states to be vectors standing on a spatial grid (2.4). The
future cell state of a particular cell in the MxN grid is then determined by its inputs
at the current time step and past states of local neighbors. Intuitively, a ConvLSTM
with a larger transition kernel should be able to capture faster motions while one
with a smaller kernel can capture slower motions (Shi et al., 2015).

FIGURE 2.4: The internal structure of ConvLSTM.

The ConvLSTM network architecture adopts the encoder-decoder RNN scheme
(Sutskever, Vinyals, and Le, 2014). For a ConvLSTM network with 4 layers, input
frames are fed into the first layer and the future predicted frame is generated at the

Chapter 2. Background and Related Work 9

fourth layer. In this process, spatial representations are encoded layer-by-layer with
hidden memory cells passed from the first layer to the top layer in the vertical direc-
tion. However, this layer-independent memory mechanism limits spatial memory
to interact in the temporal direction.

2.4.2 PredRNN

PredRNN (Wang et al., 2017) is a slight modification to the ConvLSTM architecture
that incorportes memory state flow in zigzag manner – from the final memory state
of the previous time step as input into the first memory state of the current time step
(2.5). Similar to (2.10), the key equations of PredRNN are given as follows:

gt = tanh
(
Wxg ∗ Xt +Whg ∗ Hl

t−1 + bg

)
it = σ

(
Wxi ∗ Xt +Whi ∗ Hl

t−1 + bi

)
ft = σ

(
Wx f ∗ Xt +Wh f ∗ Hl

t−1 + b f

)
C l

t = ft � C l
t−1 + it � gt

g′t = tanh
(
W ′xg ∗ Xt +Wmg ∗Ml−1

t + b′g
)

i′t = σ
(
W ′xi ∗ Xt +Wmi ∗Ml−1

t + b′i
)

f ′t = σ
(
W ′x f ∗ Xt +Wm f ∗Ml−1

t + b′f
)

Ml
t = f ′t �Ml−1

t + i′t � g′t

ot = σ
(
Wxo ∗ Xt +Who ∗ Hl

t−1 +Wco ∗ C l
t +Wmo ∗Ml

t + bo

)
Hl

t = ot � tanh
(
W1×1 ∗

[
C l

t ,Ml
t

])

(2.12)

FIGURE 2.5: Spatiotemporal LSTM (ST-LSTM) (Left) and PredRNN
(Right). The orange circles in ST-LSTM show the differences with
ConvLSTM. The orange arrows in PredRNN show the transition path

of spatiotemporal memory.

A novel spatiotemporal memory stateMl
t is introduced which is passed through

subsequent stacked layers at the same time step from bottom to top. Importantly, the
bottom layer at time t where l = 1 is described byMl=1

t =ML
t−1 where layers are

indexed by 1, ..., L. The hidden states apply a 1x1 convolution layer for dimension re-
duction to make them the same size as the memory states. The resulting architecture

Chapter 2. Background and Related Work 10

effectively models shape deformations and motion trajectories in spatiotemporal se-
quences.

2.4.3 Eidetic 3D LSTM

The Eidetic 3D LSTM (E3D-LSTM) (Wang et al., 2019) proposes a deeper integra-
tion of 3D convolution inside the LSTM unit in order to incorporate convolutional
features into the recurrent state transition over time. In this model, a consecutive
of T input frames are first encoded by a few layers of 3D-Conv to obtain high-
dimensional feature maps. The 3D feature maps are fed as input to the bottom layer
of a 4-layer E3D-LSTM to model long-term spatiotemporal interaction. The final hid-
den states are decoded by a number of stacked 3D-Conv layers to get the predicted
frames.

Crucially, E3D-LSTM introduces the "eidetic" attention mechanism denoted by
the RECALL function:

Rt = σ
(

Wxr ∗ Xt + Whr ∗ Hk
t−1 + br

)
It = σ

(
Wxi ∗ Xt + Whi ∗ Hk

t−1 + bi

)
Gt = tanh

(
Wxg ∗ Xt + Whg ∗ Hk

t−1 + bg

)
RECALL

(
Rt, Ck

t−τ:t−1

)
= softmax

(
Rt ·

(
Ck

t−τ:t−1

)>)
· Ck

t−τ:t−1

Ck
t = It � Gt + LayerNorm

(
Ck

t−1 + RECALL
(
Rt, Ck

t−τ:t−1

))
(2.13)

where σ is the sigmoid function, ∗ is the 3D-Conv operation, � is the Hadamard
product, · is the matrix product after reshaping the recall gate Rt and memory states
Ck

t−τ:t−1 into RTHW×C and RτTHW×C respectively, and τ is the number of memory
states that are concatenated along the temporal dimension.

(A) (B)

FIGURE 2.6: (A): E3D-LSTM Recurrent Unit. Cubes denote higher-
dimensional hidden states and memory states. (B): E3D-LSTM Net-

work with 3D-encoders and 3D-decoders.

Chapter 2. Background and Related Work 11

2.5 Deep Residual Learning

A residual neural network (He et al., 2015) is a type of ANN inspired by constructs
known as pyramidal cells in the cerebral cortex. Traditional ANNs contain layers
that carry information in a sequential manner from layer to layer. In contrast, resid-
ual neural networks are built by using skip-connections to jump over layers. While
any layer can be connected to another layer in a feedforward fashion in theory, it
is often seen that double or triple skip connections that contain nonlinearities with
batch normalization in between works best in practice. Residual connections have
the option to be implemented with an additional weight matrix for learning the skip
weights, or they can simply be tensor operations from layer to layer.

FIGURE 2.7: Left: Dense Convolutional Network (DenseNet) architecture,
connecting each layer to every other layer in a feedforward fashion. Example
of deep residual learning (Huang, Liu, and Weinberger, 2016). Right: The

building block of residual learning (He et al., 2015).

2.6 Mental Representations of Visual Imagery

With the rise of behaviorism, the study of mental imagery declined through the
middle part of the 20th century. However in 1971, Shepard and Metzler (S&M)
famously introduced the concept of mental rotation into the cognitive science lit-
erature – in what has now become known as one of the most influential experiments
of the field (Shepard and Metzler, 1971). The experiment was to tell as quickly as
possible whether two cube-shaped figures were either identical or mirror images.
S&M hypothesized that subjects form mental three-dimensional representations of
one of the depicted objects and rotated the representation in imagination to match
the other. Their experimental results directly supported this idea, by demonstrating
that the time taken to respond to both objects was directly proportional to the in-
crease in angular difference between them.

In support of the idea that thinking is essentially computation, these results sug-
gested that subjects run algorithmic mental processes that require longer compute
time for increasingly computationally hard problems. Crucially, Shepard interpreted
the results to support the doctrine of analog and intrinsically spatial mental pro-
cesses underlying thinking, advocating for what he called "second order isomor-
phism(s)" between objects and their mental images. Further research on mental
imagery (Kosslyn, 1994) gave rise to one of the most famous debates in cognitive

Chapter 2. Background and Related Work 12

FIGURE 2.8: Left: Analog representation of the letter "A". Right:
Propositional representation of the letter "A".

psychology about whether mental imagery is either (a) analog/spatial/depictive
(i.e. a literal drawing or functional image like an arrangement of pixels in com-
puter memory), or (b) propositional (i.e. symbolic akin to natural or programming
languages). Nevertheless, the imagery debate has not yet been official resolved, but
it stands clear that mental representations are inherently spatial and subject to the
causal structure of the world.

13

Implementation

This section presents the implementation details for our approach: Eidetic 3D LSTM
with deep residual connections. We make explorations across three design choices:

1. 2D-Conv vs. 3D-Conv inside RNN cell

2. Residual connections architecture (addition vs. concatenation)

3. Balance between l1 and l2 norms in the loss function

Software and Hardware All experiments are conducted using TensorFlow (Abadi
et al., 2016) v1.9.0 and trained with the ADAM optimizer. Experimental hardware
consists of 4 NVIDIA TITAN X (Pascal) 12GB GPUs (with CUDA v9.0 and Driver
390.116) to perform parallel computation. To ensure fair comparisons, all models
are trained with a comparable number of parameters and apply the same scheduled
sampling strategy (Bengio et al., 2015) to improve the training efficiency of recurrent
neural nets.

3.1 E3D-LSTM Hyperparameters

4 E3D-LSTMs are stacked in the vertical direction, leaving out 3D-CNN encoders
for this task. Integrated 3D-Conv operators are composed of a 2 × 5 × 5 (time ×
width × height) kernel to retain the shape of the hidden states across time. The
number of hidden output channels is 64. The temporal window length is set to
1 so there is a single overlapping frame during convolution over consecutive time
steps. A single 3D-Conv decoder is used to map hidden states to generated frames.
Additional comparisons are made between the number of stacked LSTM layers (2 or
4) and between 2D-Conv and 3D-Conv operations inside the recurrent cell. For 2D-
Conv experiments, the integrated 2D-conv operator is composed of a 1× 5× 5 kernel
such that there is no overlapping frame in the temporal direction over consecutive
convolutions.

3.2 Residuals Setup

Residual connections are integrated across the 4 layers such that the output of the 1st
layer plus the output of the 2nd layer is fed as input to the 3rd layer, and the output
of the 3rd layer plus the output of the 4th layer is fed as the input to the 3D-Conv
decoder. Importantly, residual connections do not introduce any additional learn-
able parameters. We find that the addition operation as opposed to concatenation
shows better empirical performance. Note that addition can be seen as a special case
of concatenation where the 3D-Conv decoder selects from each layer of the stacked
LSTM with equal weight.

Chapter 3. Implementation 14

LSTM1

LSTM2

LSTM3

LSTM4

LSTM1

LSTM2

LSTM3

LSTM4

LSTM1

LSTM2

LSTM3

LSTM4

3D Conv 3D Conv 3D Conv

FIGURE 3.1: Architectural design of our approach: E3D-LSTM with
deep residual connections. 4 E3D-LSTMs are stacked in the vertical
direction with residual connections between before layer 3 and before

the decoder.
⊕

denotes the addition operator.

3.3 Loss Function

The default objective function is an equally weighted sum of the l1 and l2 norms to
minimize the loss over every pixel in the frame. We use the
tf.nn.l2_loss(...) and tf.reduce_sum(tf.abs(...)) as the l2 and l1 compo-
nents, respectively. Additional comparisons are made between using only l1 loss
and only l2 loss.

15

Experiments

4.1 Experiment 1: Moving MNIST Dataset

Dataset. The Moving MNIST dataset is constructed by randomly sampling two
digits from the original MNIST dataset and making them float and bounce against
the boundaries of the frame with a constant velocity and angle inside a black canvas
of 64× 64 pixels. The whole dataset consists of 10,000 sequences for training, 3,000
for validation, and 5,000 for testing.

4.1.1 Results

Table 4.1 shows the performance of various models on the 10→ 10 task: generating
10 future frames given the 10 previous frames. We use the structural similarity in-
dex measure (SSIM) (Bengio et al., 2015) and per-frame mean squared error (MSE)
for evaluation. The SSIM ranges between -1 and +1, representing the similarity be-
tween the generated image and the ground truth image.

Model SSIM MSE
ConvLSTM (Shi et al., 2015) 0.713 96.5
DFN (Brabandere et al., 2016) 0.726 89.0
CDNA (Finn, Goodfellow, and Levine, 2016) 0.728 84.2
FRNN (Oliu, Selva, and Escalera, 2018) 0.819 68.4
VPN Baseline (Kalchbrenner et al., 2016) 0.870 64.1
PredRNN (Wang et al., 2017) 0.869 56.5
PredRNN++ (Wang et al., 2018) 0.885 46.3
E3D-LSTM (Wang et al., 2019) 0.910 41.3
E3D-LSTM Baseline 0.880 69.8
E2D-LSTM with [1,5,5] kernel 0.862 75.0
E3D-LSTM with Residuals 0.890 59.1
E3D-LSTM Finetuned with l2 only 0.9199 39.5
E3D-LSTM Finetuned with Residuals and l1 + l2 0.9219 42.5

TABLE 4.1: Results on the Moving MNIST Dataset for the 10 → 10
task. Higher SSIM or lower MSE scores indicate better results. Top:
Previous state-of-the-art models. Bottom: Our experiments finetuned
from pretrained weights demonstrating effectiveness of residual con-

nections.

The top section reports previously evaluated state-of-the-art models in the liter-
ature. The middle section describe our baselines obtained by training from scratch.

Chapter 4. Experiments 16

We make two important observations: (a) using 2D-Conv instead of 3D-Conv inside
the recurrent cell results in a SSIM drop of 0.018; (b) residual connections improve
the SSIM performance by 0.01. The bottom section shows the effectiveness of fine-
tuning with added residual connections, highlighted by the entries in bold.

FIGURE 4.1: Left: Comparison of E3D baseline, E2D, and E3D with residual con-
nections. Residuals slightly improve training efficiency and result in faster con-
vergence. Middle: E3D with residual connections comparing equally weighted l1
+ l2 loss vs. only l1 loss. l1 loss alone improves final training loss. Right: Compar-

ing addition and concatenation operators for residual connections.

Figure 4.1 (Left) demonstrates that residuals (green) slightly improve the train-
ing efficiency and results in faster convergence. Figure 4.1 (Middle) suggests that
l1 dominates the training process after 10k iterations. Figure 4.1 (Right) shows our
findings on choosing to use the addition operation for residual connections as op-
posed to concatenation.

Inputs

Ground Truth

E3D-LSTM Baseline

E3D-LSTM with Residuals

E3D-LSTM Finetuned

FIGURE 4.2: Video prediction examples from Moving MNIST dataset
on the 10→ 10 task with ’4’ and ’7’. E3D-LSTM Finetuned with Resid-
uals and l1 + l2 loss demonstrates slightly improved qualitative image

clarity.

Chapter 4. Experiments 17

4.2 Experiment 2: KTH Action Dataset

Dataset. The KTH Action Dataset (Schüldt, Laptev, and Caputo, 2004) contains
25 individuals performing 6 types of actions including walking, jogging, running,
boxing, hand waving, and hand clapping. On average, each video clip lasts for 4
seconds. We split persons 1-16 for training and persons 17-25 for testing. Each frame
is resized to 128× 128 pixels.

4.2.1 Results

Table 4.2 shows the quantitative results on the KTH Action Dataset. We use SSIM
and peak signal-to-noise ratio (PSNR) as metrics. Consistent with the observations
from the Moving MNIST experiments, we find that the finetuned E3D-LSTM model
with residual connections slightly improve performance.

Model PSNR SSIM
ConvLSTM (Shi et al., 2015) 23.58 0.712
DFN (Brabandere et al., 2016) 27.26 0.794
FRNN (Oliu, Selva, and Escalera, 2018) 26.12 0.771
PredRNN (Wang et al., 2017) 27.55 0.839
PredRNN++ (Wang et al., 2018) 28.47 0.865
E3D-LSTM (Wang et al., 2019) 29.31 0.879
E3D-LSTM Baseline 27.73 0.854
E2D-LSTM with [1,5,5] kernel 23.30 0.838
E3D-LSTM with Residuals 27.61 0.863
E3D-LSTM Finetuned with Residuals and l1 + l2 29.67 0.881

TABLE 4.2: Results on the KTH Action dataset for the 10→ 20 task.
Higher PSNR and SSIM scores indicate better performance. Top: Pre-
vious state-of-the-art models and results. Middle: Our experiments
trained from scratch. Bottom: Our experiments finetuned from pre-
trained weights demonstrating effectiveness of residual connections.

Inputs

Ground Truth

E3D-LSTM 2D Baseline

E3D-LSTM 3D Baseline

E3D-LSTM with Residuals

E3D-LSTM Finetuned

FIGURE 4.3: Video prediction examples from KTH Action dataset on
the 10 → 20 task. E3D-LSTM Finetuned with Residuals and l1 + l2

loss demonstrates slightly improved qualitative image clarity.

Chapter 4. Experiments 18

4.3 Discussion

We make three observations:

(i) 3D-Conv inside the recurrent cell is important for modeling spatiotemporal
data for long term video prediction. Similar to Santoro et al., 2018, this suggests
that 2D hidden state transitions are insufficient in capturing both short-term
motions and long-term dependencies in spatiotemporal data.

(ii) Residual connections in stacked-LSTM architectures exhibit small empirical
improvements due to their ability to maintain crucial spatial information from
earlier memory layers, consistent with recent advancements in neural machine
translation (Wu et al., 2016).

(iii) Balance between l1 and l2 norm components of the loss are crucial in maintain-
ing a stable training process. l1 incentivizes a sparse solution, while l2 gives
a solution with small magnitudes. Balancing them means balancing a trade-
off between sparsity and magnitude of non-zero entries that results in better
generalization.

19

Conclusion

5.1 Summary

In this work, we have implemented the Eidetic 3D LSTM with deep residual con-
nections, building off previous works inspired by analog and spatial representa-
tions of mental imagery. We have examined the behavior of 2D-Conv vs. 3D-Conv
inside the RNN cell, a variety of residual connection choices, and a class of loss
functions consisting of a balance between l1 and l2 norm components. We evalu-
ate our approach on the task of spatiotemporal video prediction on two benchmark
datasets: Moving MNIST and KTH Action. Our experimental results on baseline
models trained from scratch demonstrate that further hyperparameter tuning may
be necessary for achieving state-of-the-art performance (0.880 vs. 0.910 SSIM on
Moving MNIST; 0.854 vs. 0.879 SSIM on KTH Action). Additionally, our results
from finetuned models suggest that using residual connections and a balance be-
tween l1 and l2 loss allows for more efficient training with faster convergence as
well as slightly improved final performance. Our open source implementation is
available at https://github.com/kevinstan/video_prediction.

5.2 Future Work

Due to time and computational resource constraints, hyperparameter tuning has been kept
to a minimum. Were computational resources more plentiful, further work could investigate
using neural architecture search (NAS) with reinforcement learning (Zoph and Le, 2017) as
a way to enhance spatiotemporal predictive models such as E3D-LSTM. NAS alleviates the
difficultly of hand-designing neural network architectures and hyperparameters by using a
RNN to generate model descriptions of neural network architectures. In our case, further
work could allow for hand-crafted design choices (e.g. the number of stacked layers, the
placement of residual connections and their respective operations, the kernel filter shape
inside convolution operations in both the RNN cell and the decoder) to be learned automat-
ically.

Another option for accelerating training efficiency and faster model convergence would
be to leverage neuro-symbolic concept learning (Mao et al., 2019) inspired by more tradi-
tional, proprositional theories of mental imagery. Neuro-symbolic concept learning learns
visual concepts without explicit supervision, and builds an object-based scene representa-
tion as well as a set of executable, symbolic programs. Similar to how propositional repre-
sentations are generated through natural language, symbolic learners learn visual concepts
based on the language description of the object being referred to. This line of work could
potentially shed some light on the debate between analog and propositional theories as well
as simultaneously advance the state-of-the-art empirical performance of video prediction
models.

https://github.com/kevinstan/video_prediction

20

Bibliography

Abadi, Martín et al. (2016). “TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Distributed Systems”. In: CoRR abs/1603.04467. arXiv: 1603.04467.
URL: http://arxiv.org/abs/1603.04467.

Bengio, Samy et al. (2015). “Scheduled Sampling for Sequence Prediction with Re-
current Neural Networks”. In: CoRR abs/1506.03099. arXiv: 1506.03099. URL:
http://arxiv.org/abs/1506.03099.

Brabandere, Bert De et al. (2016). “Dynamic Filter Networks”. In: CoRR abs/1605.09673.
arXiv: 1605.09673. URL: http://arxiv.org/abs/1605.09673.

Finn, Chelsea, Ian J. Goodfellow, and Sergey Levine (2016). “Unsupervised Learn-
ing for Physical Interaction through Video Prediction”. In: CoRR abs/1605.07157.
arXiv: 1605.07157. URL: http://arxiv.org/abs/1605.07157.

Graves, Alex (2013). “Generating Sequences With Recurrent Neural Networks”. In:
CoRR abs/1308.0850. arXiv: 1308.0850. URL: http://arxiv.org/abs/1308.0850.

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385. arXiv: 1512.03385. URL: http://arxiv.org/abs/1512.03385.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In:
Neural Comput. 9.8, pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.9.
8.1735. URL: http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Hornik, Kurt (1991). “Approximation Capabilities of Multilayer Feedforward Net-
works”. In: Neural Netw. 4.2, pp. 251–257. ISSN: 0893-6080. DOI: 10.1016/0893-
6080(91)90009-T. URL: http://dx.doi.org/10.1016/0893-6080(91)90009-T.

Huang, Gao, Zhuang Liu, and Kilian Q. Weinberger (2016). “Densely Connected
Convolutional Networks”. In: CoRR abs/1608.06993. arXiv: 1608.06993. URL:
http://arxiv.org/abs/1608.06993.

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167.
arXiv: 1502.03167. URL: http://arxiv.org/abs/1502.03167.

Kalchbrenner, Nal et al. (2016). “Video Pixel Networks”. In: CoRR abs/1610.00527.
arXiv: 1610.00527. URL: http://arxiv.org/abs/1610.00527.

Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Optimization.
cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd Inter-
national Conference for Learning Representations, San Diego, 2015. URL: http:
//arxiv.org/abs/1412.6980.

Kosslyn, Stephen M. (1994). Image and Brain: The Resolution of the Imagery Debate.
Cambridge, MA, USA: MIT Press. ISBN: 0-262-11184-5.

Lecun, Yann et al. (1998). “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE, pp. 2278–2324.

Mao, Jiayuan et al. (2019). “The Neuro-Symbolic Concept Learner: Interpreting Scenes,
Words, and Sentences From Natural Supervision”. In: International Conference on
Learning Representations. URL: https://openreview.net/forum?id=rJgMlhRctm.

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1506.03099
http://arxiv.org/abs/1506.03099
http://arxiv.org/abs/1605.09673
http://arxiv.org/abs/1605.09673
http://arxiv.org/abs/1605.07157
http://arxiv.org/abs/1605.07157
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1610.00527
http://arxiv.org/abs/1610.00527
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rJgMlhRctm

BIBLIOGRAPHY 21

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the ideas imma-
nent in nervous activity”. In: The bulletin of mathematical biophysics 5.4, pp. 115–
133. ISSN: 1522-9602. DOI: 10.1007/BF02478259. URL: https://doi.org/10.
1007/BF02478259.

Oliu, Marc, Javier Selva, and Sergio Escalera (2018). “Folded Recurrent Neural Net-
works for Future Video Prediction”. In: The European Conference on Computer Vi-
sion (ECCV).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, Vol. 1”. In: ed. by David
E. Rumelhart, James L. McClelland, and CORPORATE PDP Research Group.
Cambridge, MA, USA: MIT Press. Chap. Learning Internal Representations by
Error Propagation, pp. 318–362. ISBN: 0-262-68053-X. URL: http://dl.acm.org/
citation.cfm?id=104279.104293.

Santoro, Adam et al. (2018). “Relational recurrent neural networks”. In: CoRR abs/1806.01822.
arXiv: 1806.01822. URL: http://arxiv.org/abs/1806.01822.

Schüldt, Christian, Ivan Laptev, and Barbara Caputo (2004). “Recognizing human
actions: A local SVM approach”. In: vol. 3, 32 –36 Vol.3. ISBN: 0-7695-2128-2. DOI:
10.1109/ICPR.2004.1334462.

Shepard, N. and Jacqueline Metzler (1971). “Mental rotation of three-dimensional
objects”. In: Science, pp. 701–703.

Shi, Xingjian et al. (2015). “Convolutional LSTM Network: A Machine Learning Ap-
proach for Precipitation Nowcasting”. In: CoRR abs/1506.04214. arXiv: 1506 .
04214. URL: http://arxiv.org/abs/1506.04214.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to Sequence Learn-
ing with Neural Networks”. In: ed. by Z. Ghahramani et al., pp. 3104–3112. URL:
http://papers.nips.cc/paper/5346- sequence- to- sequence- learning-
with-neural-networks.pdf.

Tieleman, T. and G. Hinton (2012). Lecture 6.5—RmsProp: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning.

Wang, Yunbo et al. (2017). “PredRNN: Recurrent Neural Networks for Predictive
Learning using Spatiotemporal LSTMs”. In: Advances in Neural Information Pro-
cessing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., pp. 879–888.
URL: http://papers.nips.cc/paper/6689- predrnn- recurrent- neural-
networks-for-predictive-learning-using-spatiotemporal-lstms.pdf.

Wang, Yunbo et al. (2018). “PredRNN++: Towards A Resolution of the Deep-in-Time
Dilemma in Spatiotemporal Predictive Learning”. In: CoRR abs/1804.06300. arXiv:
1804.06300. URL: http://arxiv.org/abs/1804.06300.

Wang, Yunbo et al. (2019). “Eidetic 3D LSTM: A Model for Video Prediction and
Beyond”. In: International Conference on Learning Representations. URL: https://
openreview.net/forum?id=B1lKS2AqtX.

Wu, Yonghui et al. (2016). “Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation”. In: CoRR abs/1609.08144.
URL: http://arxiv.org/abs/1609.08144.

Zeiler, Matthew D. (2012). “ADADELTA: An Adaptive Learning Rate Method”. In:
CoRR abs/1212.5701. arXiv: 1212.5701. URL: http://arxiv.org/abs/1212.5701.

Zoph, Barret and Quoc V. Le (2017). “Neural Architecture Search with Reinforcement
Learning”. In: URL: https://arxiv.org/abs/1611.01578.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
http://arxiv.org/abs/1806.01822
http://arxiv.org/abs/1806.01822
https://doi.org/10.1109/ICPR.2004.1334462
http://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1506.04214
http://arxiv.org/abs/1506.04214
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/6689-predrnn-recurrent-neural-networks-for-predictive-learning-using-spatiotemporal-lstms.pdf
http://papers.nips.cc/paper/6689-predrnn-recurrent-neural-networks-for-predictive-learning-using-spatiotemporal-lstms.pdf
http://arxiv.org/abs/1804.06300
http://arxiv.org/abs/1804.06300
https://openreview.net/forum?id=B1lKS2AqtX
https://openreview.net/forum?id=B1lKS2AqtX
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1611.01578

	Introduction
	Background and Related Work
	Artificial Neural Networks
	Architecture
	Learning Procedure
	Gradient Descent
	Adam Optimizer
	Batch Normalization

	Convolutional Neural Networks
	Convolutional Layer

	Long Short-Term Memory for Sequence Modeling
	Spatiotemporal Predictive Learning
	Convolutional LSTM
	PredRNN
	Eidetic 3D LSTM

	Deep Residual Learning
	Mental Representations of Visual Imagery

	Implementation
	E3D-LSTM Hyperparameters
	Residuals Setup
	Loss Function

	Experiments
	Experiment 1: Moving MNIST Dataset
	Results

	Experiment 2: KTH Action Dataset
	Results

	Discussion

	Conclusion
	Summary
	Future Work

	Bibliography

