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Abstract

Tensor decompositions are a valuable tool in data analysis, but the computational

cost of standard tensor algorithms quickly becomes prohibitive, especially when con-

sidering large and time-evolving data sets such as those found in signal processing

applications. In this work multilinear PCA, a common tensor analysis technique, will

be modified to enable the processing of large scale tensorial time-evolving data, such

as EEG, with much improved performance both in terms of memory and CPU time.

1 Introduction

Multilinear data analysis via tensors is a topic which has been gaining momentum in

the brain-computer interface (BCI) community over the past several years. This is due

to the limitations imposed by the use of matrices. In particular, standard techniques of

matrix factorization, such as the Singular Value Decomposition (SVD), are not equipped to

handle more than two modes, or “ways,” in the data, while electroencephalogram (EEG)

data consist of three or more modes—these commonly being channel, frequency, and time

(Figure 1.1). Thus, while an algorithm like principle component analysis (PCA—SVD with

zero-mean data) will determine the directions of greatest variance in a two mode dataset,

interactions between data sources in the third mode will be lost.
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Figure 1.1: A 3-mode EEG tensor

Tensor factorizations seek to emulate the abilities of PCA in the variance-extraction

sense, but are more difficult to perform and interpret. These difficulties spring both from

the greater time and space complexity inherent in tensor algorithms, and the fact that

notions such as rank and the value of orthogonality which apply to matrices differ in

tensor applications.

The two most common tensor factorizations are the CP (CANDECOMP/PARAFAC,

or recently Canonical Polyadic) and Tucker algorithms [3]. The Tucker decomposition

yields projection matrices and a small core tensor (not usually orthogonal) containing

features representing the variance of the data. While more flexible and simpler to compute,

Tucker allows interactions between modes to “spill over,” or more abstractly, allows for

rotation.

The CP decomposition, instead of projection matrices, gives a unique set of vectors

and corresponding elements of a diagonal core. CP does not have the rotation issue,

simplifying analysis in many cases. However, CP is calculated using optimization strategies

which may run for an indeterminate amount of time and are not guaranteed to converge

for general tensors. This makes the CP decomposition a more difficult target for an online

implementation.

This work is focused on speeding up a simple extension of the Tucker decomposi-

tion, multilinear PCA, where orthonormality of the projection matrices is enforced.
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2 Background and Previous Work

The purpose of the explanations below is to introduce both the inexperienced reader and

the skilled analyst with only the details most relevant to the tensor decomposition task at

hand, and should not be considered exhaustive descriptions.

2.1 Singular Value Decomposition

The SVD is commonly used to find the dimension of a linear system by allowing simple

determination of a statistically independent set of variables. It can be thought of as a

generalization of the eigenvalue decomposition from square to rectangular matrices. The

SVD decomposes any m × n matrix A into three factors, two orthonormal matrices, U

and V , and a matrix Σ with decreasing real values along the main diagonal, and zeros

elsewhere, such that

A = UΣV T ⇐⇒ UTAV = Σ (2.1)

in other words, A is diagonalized by the rotators U and V .

U and V are the eigenvectors of AAT and ATA respectively. Because AAT is the

covariance matrix of the columns of A, and U forms an orthogonal basis for the column

space of AAT , U is a projector into the variance space of A.

2.2 Principal Component Analysis

The vectors of the matrix U corresponding to the k largest singular values can be removed

to form an orthogonal projector Uk into a subspace of reduced dimensionality. Thus UT
k A

is in a subspace which preserves majority of the variance of the data in A.

Because the majority contributor to the variance of A could simply be its offset

from the origin, it is common to center the columns of A by subtracting their individual

means1.
1It is also clear from the above discussion that Uk could be formed from the eigenvectors of AAT using an

eigenvalue decomposition.
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PCA is thus a technique for dimensionality reduction which preserves the basic

pattern of variance in the original data. A suitable metaphor for its action might be the

reduction of a piece of paper from three dimensions to two. While paper lying flat on a

tabletop exists in three dimensions, one of these dimensions is much smaller than the rest,

and in certain contexts, such as viewing anything written on the paper, the third dimension

need not be taken into account. PCA handles this sort of transformation automatically,

without the analyst needing to manually determine which of the dimensions (of perhaps

hundreds) to pay attention to.

2.3 Relevant Notions in Multilinear Analysis

In many applications the real format of the data is much less like a matrix than we would

prefer, given the wide variety of matrix techniques that have been developed. In these

cases structuring the data so that the relationships between all the variables can be repre-

sented may reveal hidden patterns. Multilinear techniques allow for the maintenance of

this natural structure through the use of tensors.

If X is a three-mode tensor (a rectangular “box” of values) with dimensionali-

ties N1, N2 and N3, then a first-mode-unfolding of X is written X(1), and is a matrix of

dimensionality (N2 ·N3)×N1 (Figure 2.1)2, likewise for the other modes.

These unfoldings, or matricized tensors, are matrices where one whole mode of

the tensor forms the column vectors. Thus matrix operations on the unfolding result in a

partial operation on the whole tensor, and repeated unfoldings can be used with matrix

procedures to develop tensor extensions of those algorithms. A refolding reverses this

operation.

N-mode multiplication is one such extension, where ordinary matrix-matrix mul-

tiplications are paired with repeated unfoldings and refoldings to project one tensor to

another with modified dimensionality. There are several notations in use for this opera-

tion, one of these is C = X
∏M

i=1×iU as used by [6], where C (a tensor) is the M mode

2Figure from [6].
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Figure 2.1: Tensor unfolding

multilinear projection of X over the M matrices U1,2,...,M . This is generalization of matrix

projection to the tensor-matrix case.

2.4 Multilinear PCA

It is a small step from here to the tensor extension of PCA, first formulated by De Lath-

auwer and Vandewalle in [4].

Algorithm 1 Multilinear PCA
Input:
An M -mode tensor X
Output:
An M -mode tensor C and M matrices U1, U2, . . . , UM

Algorithm:
for i = 1, 2, . . . ,M :

Unfold X → X(i)

X(i) → UiΣiV
T
i via SVD

Form projection UT
i X(i) → X̃(i)

Refold X̃(i) → X̃
X̃ → X

end
X → C

The result of this procedure is that the variance and interactions between the

modes of X are compressed into the elements of C, while the bases for the projections

are stored in U1,...,M .

The downside of this algorithm is that in many cases the dimensionality of the

unfolding is relatively massive, in which case computing each of the several SVDs could
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require large amounts of memory and CPU time. To overcome this common infeasibility,

an alternative iterative optimization procedure, alternating least squares (ALS), is gener-

ally used. While this may make the impossible possible, it is more time consuming. This

makes the technique hardly suitable for online applications unless the tensors are small,

or memory and computational power are plentiful.

2.5 Randomized Matrix Rank Reduction

In general, the accuracy of a measurement is only guaranteed up to a few significant digits.

It is therefore acceptable to use numerical techniques which, while imperfect, are precise

enough for the data under analysis, and in some cases much faster than their more precise

counterparts.

After the work of Halko et al. in [2], a basic intuition behind the use of randomness

to speed up matrix decompositions is this: Suppose have an m× n matrix A and we seek

an n× k matrix Q where k < n such that

‖A−QQTA‖ (2.2)

is minimized3. This minimizing Q should be an orthogonal matrix that spans as

much of the range of A as possible. It is convenient that a random set of vectors is likely

to be linearly independent, with none in the null-space of A. This means that for some

random n × k matrix Ω, Y = AΩ is also linearly independent. Once Y has been formed

all that is required to obtain the desired basis for the range of A is to orthonormalize4 Y .

As is often the case in real life, just because something is likely doesn’t mean that it will

actually occur, and in practice it is necessary to augment Ω to n× (k + q) where q ∈ [5, 10]

to obtain a decent spanning set.

Because we are concerned with the eigenvectors of the covariance matrix, we can

take AATΩ as our desired approximation. Accuracy can be improved by reorthonormaliz-
3This is equivalent to finding the eigenvectors of A.
4Using a QR decomposition or Gram-Schmidt process.
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ing the resulting matrix between alternating A and AT passes.

As an additional note, the ordinary O(n3) complexity of the several matrix multi-

plications can be reduced. Due to our ability to choose any random n × (k + q) linearly

independent Ω, we are free to choose a circulant5 Ω and thereby obtain the excellent

matrix multiplication time complexity of O(n2 log n), due to the following principle:

Ωa = F−1(F(ω(1)) ~ F(a))

where Ω is circulant and ω(1) is its first column, a is a vector, and F is the Fourier transform

operator. This result is due to the convolution theorem and detailed in [1]. An additional

benefit is the ability to dispense with the need to store all of the values of Ω, as only the

first column is ever used. This form of matrix multiplication was not considered in [2],

and allows for additional reduction in memory use and time complexity.

2.6 Dynamic Tensor Analysis

Work by Sun et al. in [6] introduces Dynamic Tensor Analysis (DTA), an incremental

algorithm for multilinear PCA which seeks to remedy the of computational complexity

issue and enable online analysis. DTA xis quite similar to ordinary multilinear PCA, but

adds a memory component6 to allow for the tracking of fundamental changes in the tensor

space. In practice, the addition of this memory component is costly7 and for the purpose

of feature selection, unnecessary and perhaps even detrimental. The key idea taken from

this work was the notion that the additional iterations usually preformed in the ALS phase

of multilinear PCA are not required to obtain sufficient accuracy for online applications.
5In a circulant matrix each column is a cyclic shift by one element of the preceding column.
6This is supplied by the covariance matrix of the last iteration.
7Sun presents an elegant remedy for this in the form of streaming tensor analysis (STA), which is also

developed in the same paper, but is outside the scope of the current work.
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2.7 Higher Order Discriminant Analysis

Phan and Cichocki in [5] present a supervised8 method, higher order discriminant analysis

(HODA), for extracting discriminative features from EEG tensors. This method, though

very effective, was not designed with online decomposition in mind, and is too slow for

such applications.

3 Goal of the Current Work

The fundamental goal of this research is to develop an online algorithm with discrimina-

tory power competitive with HODA on EEG tensors. The step in that direction addressed

here is the development of a fast unsupervised dimensionality reduction technique for

general tensors. Implementation of discriminatory extensions will be explored later.

4 Algorithm

Given a basic understanding of the background, the principles of the algorithm of the

current work are simple. The expensive SVD step in standard multilinear PCA is replaced

by the randomized method of finding a reduced rank basis, yielding the form in Algorithm

2. The results are approximately the same as multilinear PCA, with a greatly reduced costs

in both time and memory.
8Incorporating the actual class labels of training data.
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Algorithm 2 Randomized Multilinear PCA
Input:
An M -mode tensor X
Output:
An M -mode tensor C and M matrices U1, U2, . . . , UM

Algorithm:
for i = 1, 2, . . . ,M :

Unfold X → X(i)

Let Ω be an n× (k + q) matrix with random Gaussian entries, n is compatible with X(i).
X(i)Ω→ Y0

Y0 → Q0R0

for j = 1, 2, 3
XT

(i)Qj−1 → Ỹj

Ỹj → Q̃jR̃j

X(i)Q̃j → Yj

Yj → QjRj

end
Qk → U(i)

end
X

∏M
i=1×iU→ C

5 Results

Prototype implementations of the classical and randomized algorithms indicate substan-

tial performance gains by the randomized approach. Of particular note is the transition

from fast (cache) memory to slower (RAM) memory as the size of the tensor increases.

While initially the algorithms differ by what appears to be a constant factor, the random-

ized approach accesses memory less frequently, and therefore when the size of the tensor

requires more memory, the speed doesn’t decrease as dramatically. Figure 5.1 displays

these results. Tests were also conducted with tensors of size 33×100 × 100009 and de-

compositions via the randomized algorithm completed in 8 seconds on average, while

both multilinear PCA and DTA failed to terminate after 10 minutes and the process was

manually exited (RAM was not exhausted at any time)10. The error in the approximation
9To put this in perspective, this equivalent to taking the SVD of a 3300×10000 matrix, a 330000×100

matrix, and a 106×33 matrix. Tensors of this size are not uncommon in signal processing applications, such
as EEG.

10All analysis was carried out on laptop with a dual core AMD Brazos 1.6 GHz processor, and 4 GB of RAM
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Figure 5.1: Relative performance of 33× 7× [100, 10000] tensors with classical multilinear
PCA vs. its randomized counterpart

follows the bounds given in [2] exactly.

6 Conclusion and Future Work

As can be seen from the above results, the randomized algorithm presented here has sig-

nificant speed and memory advantages over previous approaches. In the case of larger

tensors, randomization took the tensor approach from a task not possible on commod-

ity hardware to a feasible technique. In addition, general principles which can greatly

improve the speed of matrix algorithms were developed and applied to the tensor case.

The next step in this work will be exploration of methods for improving the rel-

evance of the features extracted into the core tensor to classification. As it stands, there

is no way to know whether or not the variance representations in the core are indicative

of changes within the data that indicate class differences. Preliminary work in this regard

has been promising.
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