
Abstract

Recently, neural networks using deep learning techniques

achieved great success on Chinese Word Segmentation.

However, traditional methods based on the maximum

matching algorithm maintain the advantage that they can

easily update a dictionary to accommodate for rare or novel

words. In this paper, I propose a plug-in dictionary

interface with a set of training strategies to help neural

networks make reference to a dynamically changing

dictionary. Empirical results and statistical analyses show

that my method reduces the domain transfer challenge

induced by out-of-vocabulary words when appropriate

dictionaries are provided.

1 Introduction

The Chinese Writing System represents a sentence as a continuous string of

characters without visible markers of word boundaries. However, word segmentation

is an important first step to various natural language processing problems and an

interesting task for language models to complete, because the resolving of word

boundaries require complex semantic and syntactic knowledge (Xue, 2003). The effort

to develop better algorithms for automatic Chinese Word Segmentation (CWS) dates

back to the late 20th century (Zhao et al., 2019). Although in recent years, neural

networks using deep learning have achieved remarkable success on the CWS task,

the traditional dictionary-based methods using the maximum matching algorithm

maintain the advantage of flexibility that they can relatively easily handle rare or

novel words by updating their dictionary.

In this paper, I propose to implant this dictionary lookup ability into neural

networks using a plug-in dictionary interface and a set of training strategies. My

method has three privileges. First, it can be applied on top of any model without

modification to the network structure. Second, the dictionary is an interface instead

of an integral part of the model, so its removal has little effect on the model’s original

performance. Third, the interface allows a neural network to dynamically make

Dictionary Interface for Neural Word Segmentation

Yuezhou Sun

University of California, San Diego

reference to different dictionaries in the test stage without further training. I will

demonstrate with empirical results and statistical analyses that a model trained

under my method would benefit greatly from an appropriate dictionary at test stage.

2 Background

Traditional CWS algorithms, which adopt the maximum matching algorithm, highly

rely on dictionaries (Xue, 2003). The algorithm searches through all potential

segmentations of the target sentence to maximize the number and lengths of words

that match with some entry in a pre-defined dictionary. Although purely statistical

approaches that calculate the mutual information between adjacent characters exist

(Sproat and Shih, 1990), they do not perform well on their own. Instead, the statistical

information such as word frequency or morpheme distribution typically get combined

with dictionary-based methods to obtain the best performance (Sproat and Shih,

1996). The two existing CWS toolkits, Jieba and CKIP (Ma and Chen, 2005), fall into

this category. Both use the max matching algorithm to find valid words, apply

heuristic rules referring to statistical and manually defined linguistic features to

resolve ambiguity, and extract Out-Of-Vocabulary words (OOV) using the character

distribution.

In 2003, Xue proposed to reformulate CWS as a tagging problem, where the goal

is to label each character with its position within the word. The view became widely

accepted, and researchers addressed it with some variation of conditional random

fields (Peng et al., 2004; Andrew, 2006). This new problem setup also made the task

directly suitable for neural networks when deep learning came into natural language

processing. Neural networks incorporate contextual and hierarchical information

from the input data using different network structures. Previous studies have

experimented with CNN (Liu et al. 2018), bi-LSTM (Zhou et al., 2017; Ma et al., 2018;

Chuang, 2019), and transformer (Wu et al., 2019) and achieved promising results.

Word embedding that automatically captures semantic and syntactic information

also puts neural networks at a great advantage. A number of works pretrain word

embeddings to distill linguistic knowledge, using skip-gram (Zhou et al., 2017; Ma et

al., 2018), ELMo (Chuang, 2019), or BERT (Huang et al., 2019). With many of these

models achieving promising results, deep-learning-based neural segmenters have

been shown superior to traditional methods, at least in an experimental setting

(Chuang, 2019).

However, neural word segmenters face a challenge of cross-domain

transferability, which refers to the fact that many models’ performance become

compromised when they are tested on a different corpus. This is because that most

neural networks are trained on a human annotated dataset in a supervised manner,

and then tested on a small subset of the data which had been withheld from training,

so the training set and test set are highly similar in terms of sentence structures and

common vocabulary. In fact, Out-of-Vocabulary (OOV) words pose a major challenge

at domain transfer, as widely recognized (Xue, 2003; Ma et al., 2018; Chuang, 2019)

and later demonstrated in the Section 6.

3 Related Works

Although most models implicitly address the OOV word problem via optimizing the

network structure to capture more morphological knowledge, some works also

introduce dictionaries during training.

Liu et al. generated pseudo labeled data using an external dictionary to explicitly

expose the model to rare words (2018). The same group used posterior regularization

to increase the likelihood of dictionary entries in the model distribution (Liu et al.,

2019). Although both works incorporate dictionaries, their main focus is to reduce the

demand of human annotation. The dictionary is discarded after training and one

must retrain or find-tune the model to modify the dictionary information.

Zhang et al. built feature vectors to encode whether a character forms words with

its surrounding characters according to an external dictionary, which can be altered

at the test time (2018). They demonstrated that the dictionary feature not only

improves in-domain performance, but also helps with cross-domain adaptation when

domain-specific lexicons get added into the dictionary. This work is highly relevant

to mine, since I also use a dictionary to build dictionary vectors as model input.

Nonetheless, our methods differ in multiple perspectives.

To begin with, Zhang et al. designed a network to incorporate dictionary vectors,

using two bidirectional Long Short-Term Memory networks (bi-LSTM) to process the

sentence input and dictionary vectors semi-independently from each other. My

method concatenates the dictionary vector into each character’s embedding as part of

its feature, and therefore can be built on top of any network without modifications to

the structure. Zhang et al. used conditional random fields (CRF) to make the final

prediction, while mine uses argmax from SoftMax for speed and simplicity, although

CRF can be added to further improve the results. Most importantly, Zhang et al. used

an external dictionary during training to augment their model’s vocabulary

knowledge. The dictionary is kept during testing and therefore function as an integral

part of the model. In my study, the training dictionary is directly collected from the

training corpus, so it does not provide further information to the model and can be

discarded during test. What it gives the model instead is the ability to access

customized dictionaries without additional training. Therefore, my work can be

viewed as a reproduction and complementation of Zhang et al. 2018.

4 Model Description

My model is a simple bidirectional Long Short-Term Memory neural network (bi-

LSTM) following the success of previous works (Zhou et al., 2017; Ma et al., 2018;

Chuang et al., 2019).

4.1 Sentence Embedding

The sentence input is embedded as character unigram and bigram vectors using an

embedding lookup layer. The inclusion of bigram information is found crucial to the

model’s performance. Dropout is added on the embedded sentence to promote

robustness.

4.2 Dictionary Vectors

Given a model hyperparameter of window size w and an input sentence x = (x1, x2, …,
xn), I calculate a dictionary vector di of dimension 2w+1 for each character xi, so that

di = {dii-w, dii-w+1 , …, dii, …, dii+w-1, dii+w}. Each element dij in the dictionary vector is a

one-hot feature representing whether the character substring (xi, xi+1, …, xj) or (xj,
xj+1, …, xi), depending on which index is greater, is a valid dictionary entry. If an

index exceeds the sentence length thus making the substring span invalid, the

element takes value of zero. If there is no dictionary provided, the entire vector takes

value of zeros.

The dictionary vector of each character in the sentence is concatenated with the

unigram and bigram embeddings, so that xi is represented as {ei, ei-1_i, di} when fed

into the neural network.

4.3 The Bi-LSTM Layer

A Bi-LSTM consists of a forward LSTM and a backward LSTM, which process a same

sequence forward or backward respectively. While there exists debates on whether

stacked or non-stacking bi-LSTMs works better for CWS (Ma et al., 2018; Zhang et

al., 2018; Chuang 2019), I empirically find the non-stacking version to converge faster

and achieve better results. I concatenate the hidden state at each character position

from both LSTMs for the layer output. Again, recurrent dropout is added to avoid

over-fitting.

4.4 BIES Classification

The Bi-LSTM output of each character is passed through a linear transformation

layer followed by the SoftMax function. This final classification layer scores the

character for each of the four tags, including (B)eginning of word, (I)ntermediate of

word, (E)nd of word, and (S)ingle-character word. The model’s prediction gets

compared with the ground truth labels and the Cross-Entropy Loss is applied.

5 Training Strategies

The purpose of adding dictionary vectors is to build a plug-in interface for external

dictionaries on any neural network without detriments to the model’s original task

performance. That being said, the model is expected to make word segmentation

decisions primarily on its own linguistic knowledge and only adjust its predictions if

the dictionary vector suggests something special. To achieve this goal, I devise two

training strategies. Ablation studies on these strategies will be provided in Section

6.6.

5.1 Dictionary Vector Dropout

I add random dropout to the dictionary vectors to avoid over reliance on dictionary

inputs. The dropout is applied at high level during the construction of dictionary

vectors, rather than using a regular dropout layer in the neural network. If a word is

dropped in one training sample, it is not marked in the dictionary vectors of any

involved characters in this sample. Although a regular dropout layer could achieve

the same effect, I implement the dropout in this fashion to assist the following

strategy.

5.2 Word Coining

Imagine during test, if the model fails to recognize an unknown word, we want to add

it into the dictionary to make the model recognize it. Therefore, given a same input

sentence but different dictionary vectors, a model should make different word

boundary decisions. To explicitly teach this behavior to the model, I add this strategy

named “word coining”, where I randomly glue up two adjacent words to coin a “new

word” and change the dictionary vectors and ground truth labels accordingly during

training. The new words are dynamically coined for each training sample and never

get dropped from the dictionary vectors. While the dictionary vector dropout strategy

could potentially lead the model to downplay dictionary vectors, the word coining

strategy reiterates their role of importance.

6 Experiments

6.1 Datasets

Dataset Training Set Test Set Test OOV Rate

AS 709K Sentences

/ 8,368K Tokens

14K Sentences

/ 198K Tokens

4.30

CityU 53K Sentences /

2,403K Tokens

1K Sentences /

68K Tokens

6.44

MSR 92K Sentences /

4,051K Tokens

4K Sentences /

184K Tokens

2.65

PKU 47K Sentences /

1,826K Tokens

5K Sentences /

173K Tokens

5.75

UD 4K Sentences /

156K Tokens

500 Sentences /

20K Tokens

12.06

Weibo 20K Sentences /

689K Tokens

2K Sentences /

73K Tokens

6.80

ZX 2K Sentences /

97K Tokens

1K Sentences /

48K Tokens

6.51

Table 1: Datasets.

I trained my model on five general CWS datasets including Academia Sinica Taipei

(AS), City University of Hong Kong (CU), Beijing University (PK), Microsoft Research

Beijing (MSR), and Chinese Universal Treebank (UD). The first four are provided in

the Second International Chinese Word Segmentation Bakeoff (Emerson, 2005) while

the last is taken from the Universal Dependencies 2.0 and used as the Conll2017

shared task (Zeman et al., 2017). I additionally used two datasets of special domains

for testing. The Chinese Weibo Dependency Treebank (Weibo) is collected by Wang

et al. (2014) from the social media Sina Weibo, the Chinese equivalent to Twitter.

Zhuxian (ZX) is a free Internet novel annotated by Liu and Zhang (2012).

To ensure consistency, I converted all datasets into simplified Chinese and full-width

tokens. I also re-chunked samples that contained multiple sentences or independent

clauses separated by semicolons and filtered out samples with only one character.

Table 1 exhibits the statistics of each dataset after preprocessing. The test set OOV

rate is calculated as the occurrence frequency of words in the test data that are not

found in the training set.

6.2 Evaluation Metric

Following previous works, I use F-score as the accuracy metric. The score is computed

as f = 2×p×r / (p+r) where precision p is the number of correctly segmented words

divided by the total number of words in the model’s predicted segmentation, and

recall r is that divided by the total number of words in the ground truth segmentation.

6.3 Experiment Setup

Dictionary vector window size 7

Character unigram embedding size 64

Character bigram embedding size 32

LSTM hidden size 128

Character input dropout 0.5

Dictionary vector dropout 0.5

LSTM recurrent dropout 0.2

Optimizer Adam

Learning rate 0.001

Training epochs 30

Table 2: Hyper-parameters.

On each dataset, I train a Bi-LSTM using dictionary vectors and my training

strategies with the hyper parameters listed in Table 2 and compare it with a baseline

using the same model structure but not dictionary vectors. I collect words with length

greater than one from each training set to construct the training dictionary and I

randomly sample 10% of the training data to build a validation set.

6.4 In-Domain Results

For in-domain testing, I build the test dictionary from the test data. Table 3

demonstrates each model tested on its test set under three conditions: without a

dictionary (No Dict), with the training dictionary (Train Dict), and with the test

dictionary (Test Dict).

Train Cond Test Cond AS CityU MSR PKU UD

Baseline No Dict 95.24 95.45 97.02 95.04 92.47

Ours No Dict 94.49

(-0.75)

95.02

(-0.40)

96.92

(-0.10)

94.90

(-0.14)

92.34

(-0.13)

 Train Dict 95.14

(-0.10)

95.59

(+0.14)

97.48

(+0.46)

95.40

(+0.36)

93.02

(+0.55)

 Test Dict 97.82

(+2.58)

98.25

(+2.80)

98.80

(+1.78)

97.57

(+2.53)

98.16

(+5.69)

Table 3: In-domain results.

As shown, my model performs on par with the baseline when it uses the same

dictionary as in training to construct dictionary vectors. Meanwhile, its performance

only drops slightly under the no dictionary condition. In both conditions, no additional

information is provided to the model other than what it has seen during training.

Therefore, my method does not negatively affect the model’s original performance.

Under the Test Dict condition, where additional vocabulary knowledge is

provided, my model significantly outperforms the baseline, indicating that the model

has learned to make correct reference to the dictionary interface.

Figure 1: The in-domain enhance rate positively

correlates with the test-to-train OOV rate.

Figure 2: Test dictionary cancels out the

negative correlation between a model’s test

performance and the test-to-train OOV rate.

If we take the Test Dict condition performance and the baseline performance to

compute an enhance rate and plot it against the test-to-train OOV rate of each

dataset, we get this nearly perfect linear relationship in Figure 1. The strong positive

correlation between the OOV rate and the degree of a model’s benefit from the test

dictionary seems to imply that the performance improvement comes from the

recognition of OOV words.

Figure 2 further illustrates this effect. In this scatter plot, the baseline models

trained on each dataset exhibit a strong negative correlation between the test

performance and the test set OOV rate. In a statistical analysis, the Pearson’s

correlation coefficient (r) between the two variables is as high as -0.96, confirming the

fact that OOV words are one of the major threats to neural CWS methods. However,

the r-score between the performance of my model exploiting the test dictionary and

the OOV rate drops to -0.13. This is strong evidence to support that my method has

specifically addressed and alleviated the OOV word problem.

6.5 Cross-Domain Results

For cross-domain testing, I take a model trained on one dataset and test it on another.

I build the test dictionary from the training set of the target domain, so the dictionary

does not reveal information about the test data itself, yet its vocabulary distribution

better resembles the test set compared to the training dictionary. In this way, I am

able to evaluate the effect of dictionary interface in a more realistic scenario.

 Train data MSR

Train cond Test cond Test data AS CityU PKU UD Weibo ZX

Baseline No Dict

82.15 80.12 85.32 75.00 79.74 77.86

Ours

No Dict 81.39 79.61 85.25 75.04 79.36 77.16

Train Dict 82.14 80.20 85.57 75.33 80.03 77.83

Test Dict 88.42 85.94 86.73 76.82 85.58 86.64

Table 4: Cross domain results of models trained on the MSR dataset.

Table 4 demonstrates results of models trained on the MSR dataset. The complete

table of all models tested on all datasets can be found in the Appendix. Similar to in-

domain results, my models perform on par with the baseline under the No Dict and

Train Dict conditions. They significantly outperform the baseline when the test

dictionary is provided.

We plot the Test Dict condition enhance rate against the target-to-source domain

OOV rate on figure 3 and again observe the strong linear relationship. In figure 4,

the blue datapoints representing our models’ performance under the Test Dict

condition regress to an almost horizontal line. This time, the r score between the

baseline F-score and the OOV rate is -0.62. However, it gets flattened to -0.01 after

test dictionaries are provided. Although the cross-domain performances are not as

high as in-domain results, the gap resides in factors other than the OOV challenge.

Figure 3: The cross-domain enhance rate also

positively correlates with the target-to-source

domain OOV rate.

Figure 4: Test dictionary helps eliminate the

effect of vocabulary differences across domains.

6.6 Ablation Study of Training Strategies

This section demonstrates the pivotal roles of my training strategies, including

dictionary vector dropout and word coining. On top of the bi-LSTM baseline, I add

dictionary vectors and my two training strategies step by step to train four models

and evaluate them under all three test conditions. For brevity, I exemplify the results

with models trained on the MSR dataset same as in the previous section. Complete

records on all models can be found in the Appendix.

 Test Data

Train Cond Test Cond AS CityU MSR PKU UD Weibo ZX

Baseline no dict 82.15 80.12 97.02 85.32 75.00 79.74 77.86

+ Dictionary

Vectors

no dict 39.88 36.90 36.25 37.09 40.14 37.60 54.01

train dict 78.33 75.81 95.82 85.63 74.07 76.41 74.37

test dict 90.36 88.01 99.54 91.44 79.55 86.07 88.34

+ Dictionary

Vector

Dropout

no dict 81.79 80.25 96.98 85.35 75.19 79.90 77.61

train dict 82.41 80.48 97.52 85.65 75.40 80.37 78.05

test dict 86.44 83.90 98.56 85.95 76.37 83.64 85.22

+ Word

Coining

no dict 81.39 79.61 96.92 85.25 75.04 79.36 77.16

train dict 82.14 80.20 97.48 85.57 75.33 80.03 77.83

test dict 88.42 85.94 98.80 86.73 76.82 85.58 86.64

Table 5: Ablation study of training strategies on the MSR dataset.

As shown, adding dictionary vectors alone leads to heavy reliance on the

dictionary information. Although the model achieves the highest score under the Test

Dict condition, it does not appear acceptable without the test dictionary.

The dropout strategy restores the model’s performance under the No Dict and

Train Dict conditions back to the baseline level. However, the benefit it gains from

the test dictionary gets constrained because the dropout to downplay of the dictionary

vectors.

Finally, the word coining strategy strives to find a balance between the previous

two. Its performance under the Test Dict condition is slightly worse than the

dictionary-vector-only model, and its performance without test dictionaries is slightly

compared to the dropout-only model. But overall, the combination of dictionary

vectors with both strategies yields a satisfying result.

I have used the same dictionary dropout rate and word coining rate in my

experiments. In practice, one can run a hyperparameter search to find the optimal

balancing point between the two strategies.

6.7 Comparison with Related Works and Discussion

Because the test dictionary leaks information about the test data, my model is not

directly comparable with the existent literature. However, I juxtapose my model with

some representative works in the CWS field in Table 6 to give readers a more holistic

picture.

Publications / Toolkit AS CityU PKU MSR UD

Jieba 87.1 86.8 87.6 86.5 87.6

CKIP 97.7 94.3 93.9 92.0 91.2

Ma et al., 2018 96.2 97.2 96.1 98.1 96.9

Chuang et al., 2019 98.0 98.6 97.7 98.7 98.3

Wu et al., 2019 96.7 97.9 96.7 98.3

Gong et al., 2019 95.2 96.2 96.2 97.8

Huang et al., 2019 96.6 97.6 96.6 97.9 97.3

Liu et al., 2018 - - - 95.0 -

Zhang et al., 2018 95.9 96.3 96.5 97.8 -

This work (baseline) 95.2 95.5 95.0 97.0 92.5

This work (model) 97.8 98.3 97.6 98.8 98.2

Table 6: Comparisons.

Jieba and CKIP (Ma and Chen, 2005) are two popular toolkits using traditional

algorithms. The performance was evaluated by Chuang et al. (2019).

The next three works investigate pretrained embeddings. Ma et al. used a stacked bi-

LSTM with pretrained order-aware skip-gram embeddings. Chuang et al. is the state-

of-the-art using a three-layer bi-LSTM with pretrained ELMo embeddings. Wu et al.,

used BERT with Glyce embeddings, a character embedding they proposed that is

learned from Chinese character shapes.

The following two works explore multi-criteria training, where a single model deals

with multiple datasets of different domains. Gong et al. introduced a switch-LSTM

which simultaneously trains multiple LSTMs and maintains a high level “switch”

state to route among them. Huang et al. trained a transformer on multiple datasets

and used different output layers for each dataset.

The last two works, which have been introduced in Section 3, incorporate dictionaries

in some manner. Liu et al. (2018) used an external dictionary to build pseudo labeled

data. Zhang et al. employed two bi-LSTMs to semi-indenpendently process the

sentence input and the dictionary features built from an external dictionary. Liu et

al. (2019) was only tested on domain transfer and thus is not comparable with the

rest of the works.

The next step of my study is two-fold. On one side, my dictionary vector and training

strategies can be tested on a stronger baseline, some of which listed above. On the

other side, although my method manages to bridge the gap of vocabulary differences

across domains, other gaps such as the difference between sentence structures or

even segmentation criteria remain. It will be interesting to combine my method with

other transfer learning techniques.

7 Conclusion

In summary, I introduced a method to incorporate dictionary information into neural

word segmenters using dictionary vectors and a set of training strategies, including

dropout and word coining. My method enables a model to dynamically take in

different dictionaries to recognize words unknown from the training data, without

requirements for further training, modifications to the model’s structure, or

detriments to the model’s original performance. Statistical analyses proved that my

proposed dictionary interface greatly reduces the domain transfer challenge induced

by OOV words.

References

Xue, Nianwen, and Libin Shen. "Chinese word segmentation as LMR tagging."

Proceedings of the second SIGHAN workshop on Chinese language processing-
Volume 17. Association for Computational Linguistics, 2003.

Zhao, Hai, et al. "Chinese Word Segmentation: Another Decade Review (2007-2017)."

arXiv preprint arXiv:1901.06079 (2019).

Sproat, Richard, and Chilin Shih. "A statistical method for finding word boundaries

in Chinese text." Computer Processing of Chinese and Oriental Languages 4.4

(1990): 336-351.

Sproat, Richard, et al. "A stochastic finite-state word-segmentation algorithm for

Chinese." Computational linguistics 22.3 (1996): 377-404.

Ma, Wei-Yun, and Keh-Jiann Chen. "Design of CKIP Chinese word segmentation

system." Chinese and Oriental Languages Information Processing Society 14.3

(2005): 235-249.

Peng, Fuchun, Fangfang Feng, and Andrew McCallum. "Chinese segmentation and

new word detection using conditional random fields." Proceedings of the 20th
international conference on Computational Linguistics. Association for

Computational Linguistics, 2004.

Andrew, Galen. "A hybrid markov/semi-markov conditional random field for sequence

segmentation." Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics,

2006.

Liu, Junxin, et al. "Neural Chinese Word Segmentation with Dictionary Knowledge."

CCF International Conference on Natural Language Processing and Chinese
Computing. Springer, Cham, 2018.

Zhou, Hao, et al. "Word-context character embeddings for Chinese word

segmentation." Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. 2017.

Ma, Ji, Kuzman Ganchev, and David Weiss. "State-of-the-art Chinese word

segmentation with bi-lstms." arXiv preprint arXiv:1808.06511 (2018).

Chuang, Yung-Sung. "Robust Chinese Word Segmentation with Contextualized Word

Representations." arXiv preprint arXiv:1901.05816 (2019).

Wu, Wei, et al. "Glyce: Glyph-vectors for Chinese Character Representations." arXiv
preprint arXiv:1901.10125 (2019).

Huang, Weipeng, et al. "Toward Fast and Accurate Neural Chinese Word

Segmentation with Multi-Criteria Learning." arXiv preprint arXiv:1903.04190

(2019).

Liu, Junxin, et al. "Neural Chinese Word Segmentation with Lexicon and Unlabeled

Data via Posterior Regularization." The World Wide Web Conference. ACM,

2019.

Zhang, Qi, Xiaoyu Liu, and Jinlan Fu. "Neural networks incorporating dictionaries

for Chinese word segmentation." Thirty-Second AAAI Conference on Artificial
Intelligence. 2018.

Emerson, Thomas. "The second international Chinese word segmentation bakeoff."

Proceedings of the fourth SIGHAN workshop on Chinese language Processing.

2005.

Zeman, Daniel, et al. "CoNLL 2017 shared task: multilingual parsing from raw text

to universal dependencies." Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies. 2017.

Wang, William Yang, et al. "Dependency parsing for weibo: An efficient probabilistic

logic programming approach." Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP). 2014.

Liu, Yang, and Yue Zhang. "Unsupervised domain adaptation for joint segmentation

and POS-tagging." Proceedings of COLING 2012: Posters. 2012.

Gong, Jingjing, et al. "Switch-lstms for multi-criteria chinese word segmentation."

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019.

Appendix

Full experimental records.

Trained on AS

Train

conditions

Test

conditions
Test data

 AS CityU MSR PKU UD Weibo ZX

no dict no dict 82.15% 80.12% 97.02% 85.32% 75.00% 79.74% 77.86%

 train dict

 test dict

add dict no dict 39.88% 36.90% 36.25% 37.09% 40.14% 37.60% 54.01%

 train dict 78.33% 75.81% 95.82% 85.63% 74.07% 76.41% 74.37%

 test dict 90.36% 88.01% 99.54% 91.44% 79.55% 86.07% 88.34%

add

dropping
no dict 81.79% 80.25% 96.98% 85.35% 75.19% 79.90% 77.61%

 train dict 82.41% 80.48% 97.52% 85.65% 75.40% 80.37% 78.05%

 test dict 86.44% 83.90% 98.56% 85.95% 76.37% 83.64% 85.22%

add

coining
no dict 81.39% 79.61% 96.92% 85.25% 75.04% 79.36% 77.16%

 train dict 82.14% 80.20% 97.48% 85.57% 75.33% 80.03% 77.83%

 test dict 88.42% 85.94% 98.80% 86.73% 76.82% 85.58% 86.64%

Trained on CityU

Train

conditions

Test

conditions
Test data

 AS CityU MSR PKU UD Weibo ZX

no dict no dict 90.09% 95.45% 83.60% 88.69% 81.79% 87.92% 81.98%

 train dict

 test dict

add dict no dict 43.34% 39.62% 37.69% 39.50% 42.99% 39.96% 54.36%

 train dict 84.63% 89.60% 82.86% 87.25% 79.00% 81.56% 73.40%

 test dict 91.08% 99.22% 93.28% 92.03% 81.51% 87.06% 87.76%

add

dropping
no dict 89.69% 95.10% 83.68% 88.70% 81.69% 87.28% 81.24%

 train dict 90.24% 95.69% 84.07% 89.14% 82.12% 87.81% 81.76%

 test dict 91.80% 98.31% 85.15% 89.71% 82.51% 89.64% 88.19%

add

coining
no dict 89.74% 95.02% 83.71% 88.64% 81.73% 87.37% 81.15%

 train dict 90.16% 95.59% 84.03% 88.94% 81.99% 87.89% 81.58%

 test dict 92.77% 98.25% 92.07% 92.67% 83.53% 91.47% 87.13%

Trained on PKU

Train

conditions

Test

conditions
Test data

 AS CityU MSR PKU UD Weibo ZX

no dict no dict 85.61% 85.96% 85.97% 95.04% 79.37% 86.16% 79.84%

 train dict

 test dict

add dict no dict 41.30% 37.68% 38.21% 39.64% 41.94% 38.46% 54.28%

 train dict 78.66% 77.82% 85.95% 93.23% 75.29% 78.47% 73.88%

 test dict 90.30% 88.43% 93.96% 99.41% 81.11% 86.66% 88.52%

add

dropping
no dict 84.87% 84.97% 86.17% 94.86% 78.95% 84.94% 79.00%

 train dict 85.65% 85.78% 86.43% 95.38% 79.19% 85.69% 79.77%

 test dict 89.05% 89.05% 87.47% 96.97% 80.27% 88.96% 85.45%

add

coining
no dict 85.46% 85.84% 86.10% 94.90% 79.27% 85.83% 79.55%

 train dict 86.08% 86.43% 86.37% 95.40% 79.90% 86.50% 80.19%

 test dict 91.12% 90.84% 92.73% 97.57% 81.47% 90.39% 88.52%

Trained on UD.

Train

conditions

Test

conditions
Test data

 AS CityU MSR PKU UD Weibo ZX

no dict no dict 79.49% 77.74% 76.09% 79.67% 92.47% 77.98% 76.75%

 train dict

 test dict

add dict no dict 41.73% 37.62% 36.84% 37.50% 44.16% 38.27% 54.57%

 train dict 69.58% 67.48% 70.15% 72.13% 82.62% 66.91% 64.83%

 test dict 89.30% 87.60% 91.66% 90.12% 99.50% 85.88% 87.62%

add

dropping
no dict 79.38% 77.60% 76.11% 79.61% 92.39% 77.70% 76.15%

 train dict 80.16% 78.53% 77.14% 80.66% 93.17% 78.76% 76.81%

 test dict 85.50% 83.55% 81.63% 84.48% 97.81% 83.72% 83.72%

add

coining
no dict 79.09% 77.32% 75.79% 79.21% 92.34% 77.35% 76.55%

 train dict 79.83% 78.37% 77.06% 80.43% 93.02% 78.52% 76.85%

 test dict 89.48% 88.54% 91.27% 90.76% 98.16% 88.18% 86.40%

Trained on AS

Train

conditions

Test

conditions
Test data

 AS CityU MSR PKU UD Weibo ZX

no dict no dict 95.24% 89.46% 83.15% 88.13% 80.22% 88.78% 89.01%

 train dict

 test dict

add dict no dict 41.33% 38.33% 35.74% 37.25% 42.16% 39.36% 55.41%

 train dict 92.18% 83.32% 81.28% 85.81% 78.97% 82.09% 83.45%

 test dict 98.51% 88.15% 90.01% 90.50% 81.14% 87.24% 88.45%

add

dropping
no dict 94.69% 88.85% 82.93% 88.01% 80.47% 87.90% 88.00%

 train dict 95.37% 89.39% 83.16% 88.32% 80.49% 88.20% 88.32%

 test dict 97.45% 90.96% 85.26% 89.35% 81.18% 91.01% 91.46%

add

coining
no dict 94.49% 88.38% 82.82% 87.88% 80.29% 86.98% 86.75%

 train dict 95.14% 88.69% 83.03% 88.20% 80.28% 87.21% 87.29%

 test dict 97.82% 91.80% 91.38% 91.37% 81.86% 91.02% 91.83%

