
Abstract 

Recently, neural networks using deep learning techniques 

achieved great success on Chinese Word Segmentation. 

However, traditional methods based on the maximum 

matching algorithm maintain the advantage that they can 

easily update a dictionary to accommodate for rare or novel 

words. In this paper, I propose a plug-in dictionary 

interface with a set of training strategies to help neural 

networks make reference to a dynamically changing 

dictionary. Empirical results and statistical analyses show 

that my method reduces the domain transfer challenge 

induced by out-of-vocabulary words when appropriate 

dictionaries are provided. 

 

1 Introduction 

The Chinese Writing System represents a sentence as a continuous string of 

characters without visible markers of word boundaries. However, word segmentation 

is an important first step to various natural language processing problems and an 

interesting task for language models to complete, because the resolving of word 

boundaries require complex semantic and syntactic knowledge (Xue, 2003). The effort 

to develop better algorithms for automatic Chinese Word Segmentation (CWS) dates 

back to the late 20th century (Zhao et al., 2019). Although in recent years, neural 

networks using deep learning have achieved remarkable success on the CWS task, 

the traditional dictionary-based methods using the maximum matching algorithm 

maintain the advantage of flexibility that they can relatively easily handle rare or 

novel words by updating their dictionary.  

In this paper, I propose to implant this dictionary lookup ability into neural 

networks using a plug-in dictionary interface and a set of training strategies. My 

method has three privileges. First, it can be applied on top of any model without 

modification to the network structure. Second, the dictionary is an interface instead 

of an integral part of the model, so its removal has little effect on the model’s original 

performance. Third, the interface allows a neural network to dynamically make 
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reference to different dictionaries in the test stage without further training. I will 

demonstrate with empirical results and statistical analyses that a model trained 

under my method would benefit greatly from an appropriate dictionary at test stage. 

  

2 Background 

Traditional CWS algorithms, which adopt the maximum matching algorithm, highly 

rely on dictionaries (Xue, 2003). The algorithm searches through all potential 

segmentations of the target sentence to maximize the number and lengths of words 

that match with some entry in a pre-defined dictionary. Although purely statistical 

approaches that calculate the mutual information between adjacent characters exist 

(Sproat and Shih, 1990), they do not perform well on their own. Instead, the statistical 

information such as word frequency or morpheme distribution typically get combined 

with dictionary-based methods to obtain the best performance (Sproat and Shih, 

1996). The two existing CWS toolkits, Jieba and CKIP (Ma and Chen, 2005), fall into 

this category. Both use the max matching algorithm to find valid words, apply 

heuristic rules referring to statistical and manually defined linguistic features to 

resolve ambiguity, and extract Out-Of-Vocabulary words (OOV) using the character 

distribution. 

In 2003, Xue proposed to reformulate CWS as a tagging problem, where the goal 

is to label each character with its position within the word. The view became widely 

accepted, and researchers addressed it with some variation of conditional random 

fields (Peng et al., 2004; Andrew, 2006). This new problem setup also made the task 

directly suitable for neural networks when deep learning came into natural language 

processing. Neural networks incorporate contextual and hierarchical information 

from the input data using different network structures. Previous studies have 

experimented with CNN (Liu et al. 2018), bi-LSTM (Zhou et al., 2017; Ma et al., 2018; 

Chuang, 2019), and transformer (Wu et al., 2019) and achieved promising results. 

Word embedding that automatically captures semantic and syntactic information 

also puts neural networks at a great advantage. A number of works pretrain word 

embeddings to distill linguistic knowledge, using skip-gram (Zhou et al., 2017; Ma et 

al., 2018), ELMo (Chuang, 2019), or BERT (Huang et al., 2019). With many of these 

models achieving promising results, deep-learning-based neural segmenters have 

been shown superior to traditional methods, at least in an experimental setting 

(Chuang, 2019).  

However, neural word segmenters face a challenge of cross-domain 

transferability, which refers to the fact that many models’ performance become 

compromised when they are tested on a different corpus. This is because that most 

neural networks are trained on a human annotated dataset in a supervised manner, 

and then tested on a small subset of the data which had been withheld from training, 



so the training set and test set are highly similar in terms of sentence structures and 

common vocabulary. In fact, Out-of-Vocabulary (OOV) words pose a major challenge 

at domain transfer, as widely recognized (Xue, 2003; Ma et al., 2018; Chuang, 2019) 

and later demonstrated in the Section 6.  

 

3 Related Works 

Although most models implicitly address the OOV word problem via optimizing the 

network structure to capture more morphological knowledge, some works also 

introduce dictionaries during training.  

Liu et al. generated pseudo labeled data using an external dictionary to explicitly 

expose the model to rare words (2018). The same group used posterior regularization 

to increase the likelihood of dictionary entries in the model distribution (Liu et al., 

2019). Although both works incorporate dictionaries, their main focus is to reduce the 

demand of human annotation. The dictionary is discarded after training and one 

must retrain or find-tune the model to modify the dictionary information.  

Zhang et al. built feature vectors to encode whether a character forms words with 

its surrounding characters according to an external dictionary, which can be altered 

at the test time (2018). They demonstrated that the dictionary feature not only 

improves in-domain performance, but also helps with cross-domain adaptation when 

domain-specific lexicons get added into the dictionary. This work is highly relevant 

to mine, since I also use a dictionary to build dictionary vectors as model input. 

Nonetheless, our methods differ in multiple perspectives.  

To begin with, Zhang et al. designed a network to incorporate dictionary vectors, 

using two bidirectional Long Short-Term Memory networks (bi-LSTM) to process the 

sentence input and dictionary vectors semi-independently from each other. My 

method concatenates the dictionary vector into each character’s embedding as part of 

its feature, and therefore can be built on top of any network without modifications to 

the structure. Zhang et al. used conditional random fields (CRF) to make the final 

prediction, while mine uses argmax from SoftMax for speed and simplicity, although 

CRF can be added to further improve the results. Most importantly, Zhang et al. used 

an external dictionary during training to augment their model’s vocabulary 

knowledge. The dictionary is kept during testing and therefore function as an integral 

part of the model. In my study, the training dictionary is directly collected from the 

training corpus, so it does not provide further information to the model and can be 

discarded during test. What it gives the model instead is the ability to access 

customized dictionaries without additional training. Therefore, my work can be 

viewed as a reproduction and complementation of Zhang et al. 2018. 



 

4 Model Description 

My model is a simple bidirectional Long Short-Term Memory neural network (bi-

LSTM) following the success of previous works (Zhou et al., 2017; Ma et al., 2018; 

Chuang et al., 2019).  

4.1 Sentence Embedding 

The sentence input is embedded as character unigram and bigram vectors using an 

embedding lookup layer. The inclusion of bigram information is found crucial to the 

model’s performance. Dropout is added on the embedded sentence to promote 

robustness. 

4.2 Dictionary Vectors 

Given a model hyperparameter of window size w and an input sentence x = (x1, x2, …, 
xn), I calculate a dictionary vector di of dimension 2w+1 for each character xi, so that 

di = {dii-w, dii-w+1 , …, dii, …, dii+w-1, dii+w}. Each element dij in the dictionary vector is a 

one-hot feature representing whether the character substring (xi, xi+1, …, xj) or (xj, 
xj+1, …, xi), depending on which index is greater, is a valid dictionary entry. If an 

index exceeds the sentence length thus making the substring span invalid, the 

element takes value of zero. If there is no dictionary provided, the entire vector takes 

value of zeros.  

The dictionary vector of each character in the sentence is concatenated with the 

unigram and bigram embeddings, so that xi is represented as {ei, ei-1_i, di} when fed 

into the neural network. 

4.3 The Bi-LSTM Layer 

A Bi-LSTM consists of a forward LSTM and a backward LSTM, which process a same 

sequence forward or backward respectively. While there exists debates on whether 

stacked or non-stacking bi-LSTMs works better for CWS (Ma et al., 2018; Zhang et 

al., 2018; Chuang 2019), I empirically find the non-stacking version to converge faster 

and achieve better results. I concatenate the hidden state at each character position 

from both LSTMs for the layer output. Again, recurrent dropout is added to avoid 

over-fitting.  

4.4 BIES Classification 

The Bi-LSTM output of each character is passed through a linear transformation 

layer followed by the SoftMax function. This final classification layer scores the 



character for each of the four tags, including (B)eginning of word, (I)ntermediate of 

word, (E)nd of word, and (S)ingle-character word. The model’s prediction gets 

compared with the ground truth labels and the Cross-Entropy Loss is applied. 

 

5 Training Strategies 

The purpose of adding dictionary vectors is to build a plug-in interface for external 

dictionaries on any neural network without detriments to the model’s original task 

performance. That being said, the model is expected to make word segmentation 

decisions primarily on its own linguistic knowledge and only adjust its predictions if 

the dictionary vector suggests something special. To achieve this goal, I devise two 

training strategies. Ablation studies on these strategies will be provided in Section 

6.6. 

5.1 Dictionary Vector Dropout 

I add random dropout to the dictionary vectors to avoid over reliance on dictionary 

inputs. The dropout is applied at high level during the construction of dictionary 

vectors, rather than using a regular dropout layer in the neural network. If a word is 

dropped in one training sample, it is not marked in the dictionary vectors of any 

involved characters in this sample. Although a regular dropout layer could achieve 

the same effect, I implement the dropout in this fashion to assist the following 

strategy. 

5.2 Word Coining 

Imagine during test, if the model fails to recognize an unknown word, we want to add 

it into the dictionary to make the model recognize it. Therefore, given a same input 

sentence but different dictionary vectors, a model should make different word 

boundary decisions. To explicitly teach this behavior to the model, I add this strategy 

named “word coining”, where I randomly glue up two adjacent words to coin a “new 

word” and change the dictionary vectors and ground truth labels accordingly during 

training. The new words are dynamically coined for each training sample and never 

get dropped from the dictionary vectors. While the dictionary vector dropout strategy 

could potentially lead the model to downplay dictionary vectors, the word coining 

strategy reiterates their role of importance.   

 

6 Experiments 

6.1 Datasets 



Dataset Training Set Test Set Test OOV Rate 

AS 709K Sentences 

/ 8,368K Tokens 

14K Sentences 

/ 198K Tokens 

4.30 

CityU 53K Sentences / 

2,403K Tokens 

1K Sentences / 

68K Tokens 

6.44 

MSR 92K Sentences / 

4,051K Tokens 

4K Sentences / 

184K Tokens 

2.65 

PKU 47K Sentences / 

1,826K Tokens 

5K Sentences / 

173K Tokens 

5.75 

UD 4K Sentences / 

156K Tokens 

500 Sentences / 

20K Tokens 

12.06 

Weibo 20K Sentences / 

689K Tokens 

2K Sentences / 

73K Tokens 

6.80 

ZX 2K Sentences / 

97K Tokens 

1K Sentences / 

48K Tokens 

6.51 

Table 1: Datasets. 

I trained my model on five general CWS datasets including Academia Sinica Taipei 

(AS), City University of Hong Kong (CU), Beijing University (PK), Microsoft Research 

Beijing (MSR), and Chinese Universal Treebank (UD). The first four are provided in 

the Second International Chinese Word Segmentation Bakeoff (Emerson, 2005) while 

the last is taken from the Universal Dependencies 2.0 and used as the Conll2017 

shared task (Zeman et al., 2017). I additionally used two datasets of special domains 

for testing. The Chinese Weibo Dependency Treebank (Weibo) is collected by Wang 

et al. (2014) from the social media Sina Weibo, the Chinese equivalent to Twitter. 

Zhuxian (ZX) is a free Internet novel annotated by Liu and Zhang (2012).  

To ensure consistency, I converted all datasets into simplified Chinese and full-width 

tokens. I also re-chunked samples that contained multiple sentences or independent 

clauses separated by semicolons and filtered out samples with only one character. 

Table 1 exhibits the statistics of each dataset after preprocessing. The test set OOV 

rate is calculated as the occurrence frequency of words in the test data that are not 

found in the training set.  

 



6.2 Evaluation Metric 

Following previous works, I use F-score as the accuracy metric. The score is computed 

as f = 2×p×r / (p+r) where precision p is the number of correctly segmented words 

divided by the total number of words in the model’s predicted segmentation, and 

recall r is that divided by the total number of words in the ground truth segmentation. 

6.3 Experiment Setup  

Dictionary vector window size 7 

Character unigram embedding size 64 

Character bigram embedding size 32 

LSTM hidden size 128 

Character input dropout 0.5 

Dictionary vector dropout 0.5 

LSTM recurrent dropout 0.2 

Optimizer Adam 

Learning rate 0.001 

Training epochs 30 

Table 2: Hyper-parameters. 

On each dataset, I train a Bi-LSTM using dictionary vectors and my training 

strategies with the hyper parameters listed in Table 2 and compare it with a baseline 

using the same model structure but not dictionary vectors. I collect words with length 

greater than one from each training set to construct the training dictionary and I 

randomly sample 10% of the training data to build a validation set.  

6.4 In-Domain Results 

For in-domain testing, I build the test dictionary from the test data. Table 3 

demonstrates each model tested on its test set under three conditions: without a 

dictionary (No Dict), with the training dictionary (Train Dict), and with the test 

dictionary (Test Dict). 



Train Cond Test Cond AS CityU MSR PKU UD 

Baseline No Dict 95.24 95.45 97.02 95.04 92.47 

Ours No Dict 94.49 

(-0.75) 

95.02  

(-0.40) 

96.92  

(-0.10) 

94.90  

(-0.14) 

92.34  

(-0.13) 

 Train Dict 95.14 

(-0.10) 

95.59 

(+0.14) 

97.48 

(+0.46) 

95.40 

(+0.36) 

93.02 

(+0.55) 

 Test Dict 97.82 

(+2.58) 

98.25 

(+2.80) 

98.80 

(+1.78) 

97.57 

(+2.53) 

98.16 

(+5.69) 

Table 3: In-domain results. 

As shown, my model performs on par with the baseline when it uses the same 

dictionary as in training to construct dictionary vectors. Meanwhile, its performance 

only drops slightly under the no dictionary condition. In both conditions, no additional 

information is provided to the model other than what it has seen during training. 

Therefore, my method does not negatively affect the model’s original performance.  

Under the Test Dict condition, where additional vocabulary knowledge is 

provided, my model significantly outperforms the baseline, indicating that the model 

has learned to make correct reference to the dictionary interface. 

 

  

Figure 1: The in-domain enhance rate positively 

correlates with the test-to-train OOV rate. 

 

Figure 2: Test dictionary cancels out the 

negative correlation between a model’s test 

performance and the test-to-train OOV rate. 

If we take the Test Dict condition performance and the baseline performance to 

compute an enhance rate and plot it against the test-to-train OOV rate of each 

dataset, we get this nearly perfect linear relationship in Figure 1. The strong positive 



correlation between the OOV rate and the degree of a model’s benefit from the test 

dictionary seems to imply that the performance improvement comes from the 

recognition of OOV words. 

Figure 2 further illustrates this effect. In this scatter plot, the baseline models 

trained on each dataset exhibit a strong negative correlation between the test 

performance and the test set OOV rate. In a statistical analysis, the Pearson’s 

correlation coefficient (r) between the two variables is as high as -0.96, confirming the 

fact that OOV words are one of the major threats to neural CWS methods. However, 

the r-score between the performance of my model exploiting the test dictionary and 

the OOV rate drops to -0.13. This is strong evidence to support that my method has 

specifically addressed and alleviated the OOV word problem. 

6.5 Cross-Domain Results 

For cross-domain testing, I take a model trained on one dataset and test it on another. 

I build the test dictionary from the training set of the target domain, so the dictionary 

does not reveal information about the test data itself, yet its vocabulary distribution 

better resembles the test set compared to the training dictionary. In this way, I am 

able to evaluate the effect of dictionary interface in a more realistic scenario. 

 Train data MSR 

Train cond Test cond Test data AS CityU PKU UD Weibo ZX 

Baseline No Dict 

 

82.15 80.12 85.32 75.00 79.74 77.86 

Ours 

No Dict 81.39 79.61 85.25 75.04 79.36 77.16 

Train Dict 82.14 80.20 85.57 75.33 80.03 77.83 

Test Dict 88.42 85.94 86.73 76.82 85.58 86.64 

Table 4: Cross domain results of models trained on the MSR dataset. 

Table 4 demonstrates results of models trained on the MSR dataset. The complete 

table of all models tested on all datasets can be found in the Appendix. Similar to in-

domain results, my models perform on par with the baseline under the No Dict and 

Train Dict conditions. They significantly outperform the baseline when the test 

dictionary is provided. 

We plot the Test Dict condition enhance rate against the target-to-source domain 

OOV rate on figure 3 and again observe the strong linear relationship. In figure 4, 

the blue datapoints representing our models’ performance under the Test Dict 

condition regress to an almost horizontal line. This time, the r score between the 

baseline F-score and the OOV rate is -0.62. However, it gets flattened to -0.01 after 

test dictionaries are provided. Although the cross-domain performances are not as 

high as in-domain results, the gap resides in factors other than the OOV challenge. 



  

Figure 3: The cross-domain enhance rate also 

positively correlates with the target-to-source 

domain OOV rate. 

 

Figure 4: Test dictionary helps eliminate the 

effect of vocabulary differences across domains. 

6.6 Ablation Study of Training Strategies 

This section demonstrates the pivotal roles of my training strategies, including 

dictionary vector dropout and word coining. On top of the bi-LSTM baseline, I add 

dictionary vectors and my two training strategies step by step to train four models 

and evaluate them under all three test conditions. For brevity, I exemplify the results 

with models trained on the MSR dataset same as in the previous section. Complete 

records on all models can be found in the Appendix. 

  Test Data 

Train Cond Test Cond AS CityU MSR PKU UD Weibo ZX 

Baseline no dict 82.15 80.12 97.02 85.32 75.00 79.74 77.86 

+ Dictionary 

Vectors 

no dict 39.88 36.90 36.25 37.09 40.14 37.60 54.01 

train dict 78.33 75.81 95.82 85.63 74.07 76.41 74.37 

test dict 90.36 88.01 99.54 91.44 79.55 86.07 88.34 

+ Dictionary 

Vector 

Dropout 

no dict 81.79 80.25 96.98 85.35 75.19 79.90 77.61 

train dict 82.41 80.48 97.52 85.65 75.40 80.37 78.05 

test dict 86.44 83.90 98.56 85.95 76.37 83.64 85.22 

+ Word 

Coining 

no dict 81.39 79.61 96.92 85.25 75.04 79.36 77.16 

train dict 82.14 80.20 97.48 85.57 75.33 80.03 77.83 

test dict 88.42 85.94 98.80 86.73 76.82 85.58 86.64 

Table 5: Ablation study of training strategies on the MSR dataset. 



As shown, adding dictionary vectors alone leads to heavy reliance on the 

dictionary information. Although the model achieves the highest score under the Test 

Dict condition, it does not appear acceptable without the test dictionary. 

The dropout strategy restores the model’s performance under the No Dict and 

Train Dict conditions back to the baseline level. However, the benefit it gains from 

the test dictionary gets constrained because the dropout to downplay of the dictionary 

vectors.  

Finally, the word coining strategy strives to find a balance between the previous 

two. Its performance under the Test Dict condition is slightly worse than the 

dictionary-vector-only model, and its performance without test dictionaries is slightly 

compared to the dropout-only model. But overall, the combination of dictionary 

vectors with both strategies yields a satisfying result.  

I have used the same dictionary dropout rate and word coining rate in my 

experiments. In practice, one can run a hyperparameter search to find the optimal 

balancing point between the two strategies. 

6.7 Comparison with Related Works and Discussion 

Because the test dictionary leaks information about the test data, my model is not 

directly comparable with the existent literature. However, I juxtapose my model with 

some representative works in the CWS field in Table 6 to give readers a more holistic 

picture. 

Publications / Toolkit AS CityU PKU MSR UD 

Jieba 87.1 86.8 87.6 86.5 87.6 

CKIP 97.7 94.3 93.9 92.0 91.2 

Ma et al., 2018 96.2 97.2 96.1 98.1 96.9 

Chuang et al., 2019 98.0 98.6 97.7 98.7 98.3 

Wu et al., 2019 96.7 97.9 96.7 98.3  

Gong et al., 2019 95.2 96.2 96.2 97.8  

Huang et al., 2019 96.6 97.6 96.6 97.9 97.3 

Liu et al., 2018 - - - 95.0 - 

Zhang et al., 2018 95.9 96.3 96.5 97.8 - 

This work (baseline) 95.2 95.5 95.0 97.0 92.5 

This work (model) 97.8 98.3 97.6 98.8 98.2 

Table 6: Comparisons. 



Jieba and CKIP (Ma and Chen, 2005) are two popular toolkits using traditional 

algorithms. The performance was evaluated by Chuang et al. (2019).  

The next three works investigate pretrained embeddings. Ma et al. used a stacked bi-

LSTM with pretrained order-aware skip-gram embeddings. Chuang et al. is the state-

of-the-art using a three-layer bi-LSTM with pretrained ELMo embeddings. Wu et al., 

used BERT with Glyce embeddings, a character embedding they proposed that is 

learned from Chinese character shapes.  

The following two works explore multi-criteria training, where a single model deals 

with multiple datasets of different domains. Gong et al. introduced a switch-LSTM 

which simultaneously trains multiple LSTMs and maintains a high level “switch” 

state to route among them. Huang et al. trained a transformer on multiple datasets 

and used different output layers for each dataset.  

The last two works, which have been introduced in Section 3, incorporate dictionaries 

in some manner. Liu et al. (2018) used an external dictionary to build pseudo labeled 

data. Zhang et al. employed two bi-LSTMs to semi-indenpendently process the 

sentence input and the dictionary features built from an external dictionary. Liu et 

al. (2019) was only tested on domain transfer and thus is not comparable with the 

rest of the works. 

The next step of my study is two-fold. On one side, my dictionary vector and training 

strategies can be tested on a stronger baseline, some of which listed above. On the 

other side, although my method manages to bridge the gap of vocabulary differences 

across domains, other gaps such as the difference between sentence structures or 

even segmentation criteria remain. It will be interesting to combine my method with 

other transfer learning techniques. 

 

7 Conclusion 

In summary, I introduced a method to incorporate dictionary information into neural 

word segmenters using dictionary vectors and a set of training strategies, including 

dropout and word coining. My method enables a model to dynamically take in 

different dictionaries to recognize words unknown from the training data, without 

requirements for further training, modifications to the model’s structure, or 

detriments to the model’s original performance. Statistical analyses proved that my 

proposed dictionary interface greatly reduces the domain transfer challenge induced 

by OOV words.  
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Appendix 

Full experimental records. 

 

Trained on AS 

Train 

conditions 

Test 

conditions 
Test data 

  AS CityU MSR PKU UD Weibo ZX 

no dict no dict 82.15% 80.12% 97.02% 85.32% 75.00% 79.74% 77.86% 

 train dict        

 test dict        

add dict no dict 39.88% 36.90% 36.25% 37.09% 40.14% 37.60% 54.01% 

 train dict 78.33% 75.81% 95.82% 85.63% 74.07% 76.41% 74.37% 

 test dict 90.36% 88.01% 99.54% 91.44% 79.55% 86.07% 88.34% 

add 

dropping 
no dict 81.79% 80.25% 96.98% 85.35% 75.19% 79.90% 77.61% 

 train dict 82.41% 80.48% 97.52% 85.65% 75.40% 80.37% 78.05% 

 test dict 86.44% 83.90% 98.56% 85.95% 76.37% 83.64% 85.22% 

add 

coining 
no dict 81.39% 79.61% 96.92% 85.25% 75.04% 79.36% 77.16% 

 train dict 82.14% 80.20% 97.48% 85.57% 75.33% 80.03% 77.83% 

 test dict 88.42% 85.94% 98.80% 86.73% 76.82% 85.58% 86.64% 

 

Trained on CityU 

Train 

conditions 

Test 

conditions 
Test data 

  AS CityU MSR PKU UD Weibo ZX 

no dict no dict 90.09% 95.45% 83.60% 88.69% 81.79% 87.92% 81.98% 

 train dict        

 test dict        

add dict no dict 43.34% 39.62% 37.69% 39.50% 42.99% 39.96% 54.36% 

 train dict 84.63% 89.60% 82.86% 87.25% 79.00% 81.56% 73.40% 

 test dict 91.08% 99.22% 93.28% 92.03% 81.51% 87.06% 87.76% 

add 

dropping 
no dict 89.69% 95.10% 83.68% 88.70% 81.69% 87.28% 81.24% 

 train dict 90.24% 95.69% 84.07% 89.14% 82.12% 87.81% 81.76% 

 test dict 91.80% 98.31% 85.15% 89.71% 82.51% 89.64% 88.19% 



add 

coining 
no dict 89.74% 95.02% 83.71% 88.64% 81.73% 87.37% 81.15% 

 train dict 90.16% 95.59% 84.03% 88.94% 81.99% 87.89% 81.58% 

 test dict 92.77% 98.25% 92.07% 92.67% 83.53% 91.47% 87.13% 

 

Trained on PKU 

Train 

conditions 

Test 

conditions 
Test data 

  AS CityU MSR PKU UD Weibo ZX 

no dict no dict 85.61% 85.96% 85.97% 95.04% 79.37% 86.16% 79.84% 

 train dict        

 test dict        

add dict no dict 41.30% 37.68% 38.21% 39.64% 41.94% 38.46% 54.28% 

 train dict 78.66% 77.82% 85.95% 93.23% 75.29% 78.47% 73.88% 

 test dict 90.30% 88.43% 93.96% 99.41% 81.11% 86.66% 88.52% 

add 

dropping 
no dict 84.87% 84.97% 86.17% 94.86% 78.95% 84.94% 79.00% 

 train dict 85.65% 85.78% 86.43% 95.38% 79.19% 85.69% 79.77% 

 test dict 89.05% 89.05% 87.47% 96.97% 80.27% 88.96% 85.45% 

add 

coining 
no dict 85.46% 85.84% 86.10% 94.90% 79.27% 85.83% 79.55% 

 train dict 86.08% 86.43% 86.37% 95.40% 79.90% 86.50% 80.19% 

 test dict 91.12% 90.84% 92.73% 97.57% 81.47% 90.39% 88.52% 

 

Trained on UD. 

Train 

conditions 

Test 

conditions 
Test data 

  AS CityU MSR PKU UD Weibo ZX 

no dict no dict 79.49% 77.74% 76.09% 79.67% 92.47% 77.98% 76.75% 

 train dict        

 test dict        

add dict no dict 41.73% 37.62% 36.84% 37.50% 44.16% 38.27% 54.57% 

 train dict 69.58% 67.48% 70.15% 72.13% 82.62% 66.91% 64.83% 

 test dict 89.30% 87.60% 91.66% 90.12% 99.50% 85.88% 87.62% 

add 

dropping 
no dict 79.38% 77.60% 76.11% 79.61% 92.39% 77.70% 76.15% 



 train dict 80.16% 78.53% 77.14% 80.66% 93.17% 78.76% 76.81% 

 test dict 85.50% 83.55% 81.63% 84.48% 97.81% 83.72% 83.72% 

add 

coining 
no dict 79.09% 77.32% 75.79% 79.21% 92.34% 77.35% 76.55% 

 train dict 79.83% 78.37% 77.06% 80.43% 93.02% 78.52% 76.85% 

 test dict 89.48% 88.54% 91.27% 90.76% 98.16% 88.18% 86.40% 

 

Trained on AS 

Train 

conditions 

Test 

conditions 
Test data 

  AS CityU MSR PKU UD Weibo ZX 

no dict no dict 95.24% 89.46% 83.15% 88.13% 80.22% 88.78% 89.01% 

 train dict        

 test dict        

add dict no dict 41.33% 38.33% 35.74% 37.25% 42.16% 39.36% 55.41% 

 train dict 92.18% 83.32% 81.28% 85.81% 78.97% 82.09% 83.45% 

 test dict 98.51% 88.15% 90.01% 90.50% 81.14% 87.24% 88.45% 

add 

dropping 
no dict 94.69% 88.85% 82.93% 88.01% 80.47% 87.90% 88.00% 

 train dict 95.37% 89.39% 83.16% 88.32% 80.49% 88.20% 88.32% 

 test dict 97.45% 90.96% 85.26% 89.35% 81.18% 91.01% 91.46% 

add 

coining 
no dict 94.49% 88.38% 82.82% 87.88% 80.29% 86.98% 86.75% 

 train dict 95.14% 88.69% 83.03% 88.20% 80.28% 87.21% 87.29% 

 test dict 97.82% 91.80% 91.38% 91.37% 81.86% 91.02% 91.83% 

 


