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1 Introduction

A lack of functional integration has been proposed as a signature of many degen-
erative and developmental disorders, including schizophrenia and autism (Just
et al., 2004). These connectivity patterns are often assessed with ad-hoc tech-
niques based on pairwise correlations. The procedures may lead to a misleading
characterization of the underlying neural connectivity pattern, because these
techniques cannot distinguish direct connections from mediated connections.
More powerful statistical techniques exist which can sometimes uncover a model
reflecting these distinctions. Although only a handful of papers to date have ap-
plied graphical model techniques to fMRI, they are often used in bioinformatics,
which shares some statistical issues with fMRI data, including a small number
of observations (i.e. hundreds) with a large number of variables (thousands).
The proposed project will examine existing techniques for learning functional
structure from fMRI time series, focusing on methods from the graphical models
framework. The major part of the project will compromise a review of exist-
ing techniques, evaluation using real and simulated fMRI datasets, and work
on algorithms which can scale up to a large number of regions than usually
considered in functional connectivity analysis.

The remainder of this proposal is organized as follows: Section 2 explains the
problem with correlation-based approaches. Section 3 contains a brief overview
of graphical models and algorithms for structure learning. Section 4 summa-
rizes previous literature in structure learning for fMRI. Section 5 summarizes
work already done on this project and Section 6 outlines proposed extensions
and comparisons to existing methods. Section 7 contains predictions and open
questions to be addressed during this project.

2 Problems with pairwise correlations

Many papers employ the following technique: first all pairwise connections
are computed, and then subjected to some subsequent analysis such as MDS
(Welchew et al., 2005, 2002), graph-theoretic approaches (Achard et al., 2006),or
factor analysis.
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Correlation, however, is a poor source of information about statistical depen-
dence between regions, because it neglects the influence of the other variables.
An alternative measure is the partial correlation coefficient, which instead en-
codes conditional independence relationships. Partial correlation is the corre-
lation between the residuals of two variables, after regressing out all the other
variables. This measure was proposed for fMRI in Marrelec et al. (2007, 2006),
for MEG by Langheim et al. (2006) and related models were presented in Sal-
vador et al. (2005); Battle et al. (2007).

3 Graphical Modeling Methods

When the prior knowledge can identify the existence and nature of connections
between regions, techniques such as structural equation modeling (SEM) or
dynamic causal modeling DCM (Friston et al., 2003) can be used to assess the
strength of a connection.

Many times there is insufficient prior knowledge to completely specify a
model. Data-driven approaches for exploratory modeling of fMRI include Granger
Causality (Roebroeck et al., 2005), Structural Equation Modeling (Storkey
et al., 2007; Bullmore et al., 2000; Stein et al., 2007), Bayesian Networks (Zheng
and Rajapakse, 2006) and Dynamic Bayesian Networks (Zhang et al., 2006; Li
et al., 2008b; Rajapakse and Zhou, 2007). Working from different assumptions,
all of these approaches lead to a best-fit model identifying the existence and
direction of connections between regions of interest. Probabilistic graphical
models form a general framework which includes structural equation models,
Bayesian networks, and many other measures of connectivity previously applied
to fMRI, including factor analysis, principal components analysis, independent
components analysis and clustering (Roweis and Ghahramani, 1999).

These models define a probability distribution on directed graph. Significant
interactions between variables are expressed in the model as edges in the graph.
Edges encode information about the existence of a probabilistic dependence
between the variables in the model, and for directed models also encode the
direction of the causal interaction.

3.1 Structure Learning Algorithms

3.1.1 Search-and-score algorithms

One approach to structure learning is to exhaustively test every possible model,
which is feasible only for small numbers of variables. Because an overparametrised
model may fit better, the “best” model is chosen based on some penalized weigh-
ing of model fit and model complexity. Exhaustive searches have been applied
to fMIR models in several studies (Hanson et al., 2007; Bullmore et al., 2000;
Zhuang et al., 2005). Because the space of possible models grows exponentially
with the number of variables, for larger models it is necessary to use approxi-
mate search procedures (Storkey et al., 2007; Zheng and Rajapakse, 2006; Zhang
et al., 2006; Li et al., 2008b; Rajapakse and Zhou, 2007).
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3.1.2 Constraint-based approaches

Another approach to structure learning is the use of constraint-based mod-
els,yielding the closely related PC and IC algorithms Spirtes et al. (2000); Pearl
(2000) . These models conduct a number of statistical tests and then apply a
set of structural rules to determine the existence and number of connections.
Recent work has shown this algorithm to be feasible even in high-dimensional
spaces (Kalisch and Bühlmann, 2007).

3.1.3 LiNGAM Algorithm

Gaussian distributed data leads to several models which can fit equally well
due to identifiability problems. Howver, if all the underlying variables are non-
Gaussian, it is possible to fully recover the model from the data. The LINGAM
algorithm by Shimizu et al. (2006) uses Independent Component Analysis (Bell
and Sejnowski, 1995; Comon et al., 1994), and some algebra to uncover a struc-
tural equation model from the data.

3.1.4 Graphical Gaussian Model

The graphical Gaussian model (Dempster, 1972; Whittaker, 1990; Lauritzen,
1996; Edwards, 2000) models the data as multivariate Gaussian, but constrains
the inverse of the covariance matrix to have a zero for all pairs of variables which
are conditionally independent.

The inverse of the covariance matrix D = Σ−1 is known as the concentration
or precision matrix.

The partial correlation between two variables Πij can be calculated from the
precision matrix as

Πij = − dij
√

diidjj

A zero in the off-diagonal entries of D, dij corresponds to conditional inde-
pendence, ie.

Xi ⊥⊥ Xj |X\ij

Recently there has been some work on fast estimation of larger version of
these models, following an influential paper by Meinshausen and Buhlmann
(2006).

Undirected models may be a better model for fMRI time series data as the
causal relationships between regions occur at a much faster temporal rate than
we can hope to observe using the BOLD response. Undirected connections may
also be used as a seed for further analysis with structural equation modeling
or other techniques. The relationship between partial correlation, graphical
Gaussian models and structural equation models is discussed in (Kiiveri and
Speed, 1982) and (Marrelec et al., 2005).
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4 fMRI Applications

Several data models have been applied to functional MRI. Here I summarize
those which can be described as graphical models (structural equation models
and Bayesian networks), and describe attempts to learn the structure of the un-
derlying model. Granger causality is not discussed here. The Dynamic Causal
Modeling framework (Friston et al., 2003) can be seen as a special case of a Dy-
namic Bayesian network, and structure learning techniques should be applicable
to this model although this has not been done to date.

4.1 SEM Learning

The earliest paper I have found to date learning structure from fMRI time
series is Bullmore et al. (2000). The method first sets all SEM coefficients
to zero, and then gradually allows them to become unconstrained. Several
measures of model fit are considered, including Akaike Information criterion,
Bollen parsimonious fit index, as well as a chi-square test. A more recent study
with a similar method Stein et al. (2007) use simulated annealing to learn SEMs.
This one again uses parsimonious fit index, but the space of networks searched
is also constrained by using (macaque) anatomical information. This is the only
paper I have seen to date using anatomical information as a prior. For a small
network (5 regions), Zhuang et al. (2005) exhaustively tested every possible
model. Goodness of fit was tested using Adjusted Goodness of Fit Index and
comparing residuals.Storkey et al. (2007) present a Bayesian approach to SEM
learning for fMRI. In this case a Markov Chain Monte Carlo (MCMC) method is
used to sample the space of possible networks. The authors note that no checks
for cyclic structure are necessary in this approach, contrasting to searches for
DAGs.

4.2 Learning Bayesian Networks

Zhang et al. (2006) present two algorithms for learning dynamic Bayesian net-
works, loosely characterized as a hill-climbing and an expectation maximization
(EM) approach. Model fit was assessed using Bayesian Information Criterion,
but the main evaluation is ability of learned networks to distinguish cocaine-
addicted from control subjects.

Zheng and Rajapakse (2006) learn Bayesian networks using an MCMC ap-
proach and evaluating fit using Bayesian Information Criterion. This paper
is a bit sparse on methodological details. The authors note that they pre-
fer search-and-score methods is preferred to constraint-based approaches be-
cause constraint-based approaches conduct multiple independence tests and lose
statistical power. A follow-up by this group extends to method to dynamic
Bayesian networks Rajapakse and Zhou (2007). Again an MCMC/BIC search
is used, and there is a (brief) comparison to granger causality.

(Li et al., 2007, 2006) have a series of papers applying dynamic bayesian
networks, leading up to a Neuroimage paper considering how to best model

4



individual differences Li et al. (2008b). The models considered include “virtual-
typical subject” (pooling all data and learning a single model ignoring individual
variability), “individual subjects” (learning a different model for each subject)
and “common structure” (same structure for each model, but parameters are
allowed to vary between subjects). The most recent publication from this group
applies false discovery rate to detection of connections Li et al. (2008a).

5 Work To date

To date, three methods have been investigated using an unpublished dataset
from Deborah Harrington’s laboratory. These methods included correlations
and MDS, the LiNGAM algorithm, and the graphical Gaussian model.

5.1 Subjects

There were 19 control subjects, and 21 subjects with early-onset Parkinson’s
disease. The Parkinson’s group were scanned twice, on and off medication.

5.2 Experimental Task

The task involves perceiving either a visual or auditory stimulus and then a
second stimulus after 5 seconds, and the participant needs to make a response
as to whether the second stimulus is longer or shorter than the first. Each
pair of events (encode and decide) is always constrained to the same modality,
and there are 60 visual and 60 auditory blocks. After extraction, each ROI
timecourse was linearly detrended within blocks and scaled to have mean zero
and variance one.

5.3 Correlations and Multidimensional Scaling

For exploratory analysis, we computed all cross-correlations between ROIs. The
cross correlation matrix is then reshaped into a vector and submitted to an MDS
analysis, which yields a clear group difference. Similar analyses were performed
in (Welchew et al., 2005, 2002). To measure significance of connection differ-
ences, correlations were converted to z-scores using Fisher’s r-to-z transforma-
tion. A t-test between groups was then performed. Connections shown in the
graph indicate a significant difference in connection strengths between groups at
a p-value of 0.01, and using the Bonferroni correction for multiple comparisons,
yielding a total of 1198 significantly different interactions.

5.4 LiNGAM

MATLAB code is available for the LiNGAM algorithm from the authors. This
was applied to the Parkinson’s data as in the MDS section, learning a model from
each individual subject. To compare LiNGAM models, I applied MDS to the
(pruned) matrix of connection strengths returned by the LiNGAM algorithm.
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Significant Group Differences − Correlation Coefficient
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Figure 1: Significant Group Differences in Correlation
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Figure 2: Multidimensional Scaling of Group Correlations
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Significant Group Differences − LiNGAM Connection Strengths
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Figure 3: Significant Group Differences in Connection Strength
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Figure 4: Multidimensional Scaling of LiNGAM models

This is similar to using the IS (individual subjects) method of Li et al. (2008b).
The resulting models had 57 parameters which significantly differed between
controls and the Parkinson’s group. (Using a t-test on the pruned connection
strength matrices).

5.5 Graphical Gaussian Model

In order to fit a graphical Gaussian model to our data, we need to consider model
selection and fitting of a model. Model selection in this context is choosing which
elements of the precision matrix to set to zero, and model fitting is estimating
the covariance matrix, respecting the conditional independencies.

Correlations are tranformed to normally distributed variables using Fisher’s
r to z-transform:

z(i, j) =
1

2
log

(

1 + Πij

1 − Πij

)

The test then is to see if the partial correlation significantly differs from zero:
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√
N − k − 3|z(i, j)| ≤ Φ−1(1 − α/2)

Φ is the cdf of the standard normal distribution, N is the sample size, k is
the order of the correlation. After computing all partial correlations the graph is
thresholded to yield a conditional independence graph. To correct for multiple
comparisons, we use the False Discovery Rate Genovese et al. (2002); Benjamini
and Hochberg (1995).

This yields an “individual subjects” model of functional connectivity. For
group analysis, we conduct several additional hypothesis tests.

A binomial test was used to detect edges which exist in a majority of subjects
within each group. These edges are shown in the figures. To find edges which
reliably distinguish subjects, the distribution of edges is compared to a binomial
distribution. Edges which are significant (corrected with FDR) are shown in
Figure. These edges indicate those which reliably distinguish groups, but they
are only a subset of the entire conditional independence graph. The subset of
edges which pass both binomial tests are colored in the figure: this indicates
that they are significantly present in the group show, and significantly different
in this group from the number of edges present in the other group.

To facilitate comparison with correlation based approaches, we also con-
ducted one-sided t-tests of the differences in correlations and partial correlations
between groups.

Once the model is chosen, the covariance matrix has to be fit to this data,
respecting the conditional independence relationships encoded in the inverse
covariance. An iterative algorithm is given by Speed and Kiiveri (1986) and we
make use of the implementation in the R package ggm.

6 Results

Here we present the results of three comparisons: Patients on and off medication,
Patients off medication vs controls, and patients on medication vs controls.

All of the methods were able to detect differences between the control and
Parkinson’s groups. Although both the correlation and partial correlation mod-
els are simple to compute and explain, the interpretation differs. One issue with
the partial correlation analysis is that the direction of the correlations can re-
verse in the partial correlations. The LiNGAM algorithm runs for a long time,
which may indicate an inability to scale to a larger number of regions. This
is largely due to the large number of significance tests, which were performed
using the bootstrap method implemented in the software. It may be possible to
improve this algorithm by imposing a sparsity constraint on the inverse of the
mixing matrix returned by the ICA algorithm.
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Figure 5: Control vs PD-Off and Control vs PD-On Decide Phase

Figure 6: PD-Off vs Control and PD-Off vs PD-On Decide Phase

Figure 7: PD-On vs Control and PD-On vs PD-Off Decode Phase
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Figure 8: PD-On vs Control and PD-On vs PD-Off Encode Phase

Figure 9: Control vs PD-Off and Control vs PD-On Encode Phase

Figure 10: PD-Off vs Control PD-Off vs PD-On Encode Phase
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7 Proposed Work

The main focus of this project is on a critical review and evaluation of these
algorithms, and comparison to other methods for functional connectivity. Al-
though comparisons exist in the literature, some of the algorithms and models
considered (graphical Gaussian model, LINGAM) are novel to fMRI, and exist-
ing literature reviews often only compare 2-3 models, and contain misleading or
incorrect characterizations of some techniques. Another area of exploration on
this project is the ability of algorithms to scale to whole-brain connectivity.

7.1 Datasets

It is important that the data used correspond to well-known functional path-
ways. Three datasets will be used: data from Ishai et al. (2000) studying visual
object recognition, and two unpublished datasets, the Parkinson’s dataset pre-
viously described and another from Angela Yu. The latter two datasets allows a
particularly powerful means to test these methods because subjects were run on
and off medications affecting neurotransmitters. This allows a within-subjects
comparison of the effects of medication: the drug effects are known, and should
be detected by functional connectivity methods, while removing potential con-
founds due to differences in subjects or tasks.

7.1.1 Ishai

This dataset comes from a study of visual object representation(Ishai et al.,
2000). As one of the first publicly-available datasets, this data has been re-
analyzed in seval publications, and involves the highly studied visual object
recognition system. Models applied to this dataset are easily reproducible, and
we have strong prior expectations about what networks the method should re-
cover.

7.1.2 Parkinson’s Dataset

The dataset used comes from a study (in preparation) from Deborah Harring-
ton’s laboratory. This dataset is described in section. A feature of this dataset
is that the Parkinson’s group were run on and off dopamine-replacement med-
ication. This dataset also includes Diffusion Tensor Imaging of each subject,
which allows estimation of the number of anatomical connections between re-
gions. Another possible validation of the model is to see if the methods find
connections that respect known connectivity, or even to include this information
in the search procedure as prior information.

7.1.3 Angela Yu Dataset

This data comes from an unpublished study by Angela Yu. The task involved
decision making under uncertainty. Subjects were administered placebo, cloni-
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dine (affecting norepinephrine) and scopolamine ( affecting acetylcholine) during
experimental sessions.

7.2 Experiment 1 : Simulation Study

The first experiment will involve an evaluation of structure-learning techniques
using simulated data. An extensive comparison of methods appears in Tsamardi-
nos et al. (2006). The proposed experiment will involve a smaller subset of algo-
rithms, and will evaluate them with simulated fMRI time series. An important
outcome will be investigating the effects of preprocessing, including removing
autoregressive trends from the data. Algorithms will be evaluated based on
their ability to identify the existence of connections, and for directed models,
the direction of connections.

7.3 Experiment 2 : fMRI application

Methods which are show to perform well on simulated data will then be ap-
plied to the fMRI datasets. Algorithms will be evaluated for ability to discover
pathways which correspond to known anatomical connections, and areas known
to be involved in the task. The fMRI data will be reduced to a set of time-
courses following the standard practices (i.e. using the mean of a functionally
or anatomically defined region of interest), resulting in a few dozen timecourses
or less. Another issue to investigate in this experiment is reproducibility of
these results should also be evaluated, for example using split-half resampling
on fMRI datasets to evaluate methods. A related issue is the impact of prepro-
cessing steps, including detrending, highpass filtering, and the means of gener-
ating an average timecourse from a region of interest. Finally, the two datasets
with drug and disease effects allow assessment of ability to uncover these effects
within the same subject subject to manipulation of neurotransmitters. The
methods in these cases should identify correctly the same medication effects
across subjects.

7.4 Experiment 3

Another direction of this research is investigation of the ability of these methods
to scale to a large number of variables. A promising set of methods to scale to
full-brain conenctivity are l1 regularized Gaussian graphical model techniques.

The idea of the l1 or lasso technique is best explained in linear regression,
where the objective is to find the β which minimizes the sum-squared error

||Y − Xβ||2
2

The Lasso (Tibshirani, 1996) additionally penalizes the absolute value of the
weights.

||Y − Xβ||2
2
+ θ

p
∑

j=1

|βj |
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This penalty on weights leads to a model which sets many of the coefficients
to zero, leading to a more parsimonious model and helping to control overfitting
when the number of regressors is large. Meinshausen and Buhlmann (2006)
prove that under a few assumptions,the lasso solution (regressing each variable
against all others) will find the correct pattern of conditional independence in the
graphical Gaussian Model. Since then there have been several fast algorithms
using convex optimization. D’Aspremont et al. (2008); Banerjee and El Ghaoui
(2008); Banerjee and Natsoulis (2006); Duchi et al. (2008); Yuan and Lin (2007).
Friedman et al. (2007b) impose a lasso penalty and use a coordinate wise descent
procedure from Friedman et al. (2007a) to make it fast for large models.

As noted above, it may be possible to extend this insight to the LiNGAM
algorith, which uses the inverse of the ICA mixing matrix as a step in the
structure discovery algorithm.

Several other algorithms perform well in low-sample, high dimensional sit-
uations including the PC algorithm, and similar approximate constraint-based
approached (Kalisch and Bühlmann, 2007; Castelo and Roverato, 2006; Opgen-
Rhein and Strimmer, 2007).

8 Potential Outcomes and Contributions

The results of the first experiment and a thorough literature review will indicate
how well structures may be recovered from fMRI data. An important result will
be quantifying the ambiguity of these methods, which is an issue not discussed
much to data in this literature.

Subsequent evaluation on fMRI imaging data will also allow comparisons of
methods. The unique ability to compare methods within-subjects to discover
neurotransmitter effects allows for a comparison with fewer confounding effects,
and a measure of the ability of the methods to uncover effects which should lead
to a change in the functional interaction between brain regions.

The third experiment applying structure learning at the voxel level should
reveal similar results at a gross level to the resuls from using an average time
course from an ROI. If the results differ substantially from the results obtained
using an average timecours from regions of interest, this may indicate that this
methodology is flawed, and may suggest improved means of summarizing a
region of interest.

The most important contribution of this project will be in summarizing these
methods in an accessible form, and explaining how they differ from correlation-
based approaches widely used. This may lead to different interpretation of the
results from functional connectivity studies to date.

References

Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E., 2006. A Re-
silient, Low-Frequency, Small-World Human Brain Functional Network with

13



Highly Connected Association Cortical Hubs. Journal of Neuroscience 26 (1),
63.

Banerjee, O., El Ghaoui, L., 2008. Model Selection Through Sparse Maximum
Likelihood Estimation for Multivariate Gaussian or Binary Data. Journal of
Machine Learning Research 9, 485–516.

Banerjee, O., Natsoulis, G., 2006. Convex optimization techniques for fitting
sparse Gaussian graphical models. Proceedings of the 23rd international con-
ference on Machine learning, 89–96.

Battle, A., Chechik, G., Koller, D., 2007. Temporal and Cross-Subject Proba-
bilistic Models for fMRI Prediction Tasks. Advances in Neural Information
Processing Systems: Proceedings of the 2006 Conference.

Bell, A., Sejnowski, T., 1995. An Information-Maximization Approach to Blind
Separation and Blind Deconvolution. Neural Computation 7 (6), 1129–1159.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practi-
cal and powerful approach to multiple testing. Journal of the Royal Statistical
Society, Series B 57 (1), 289–300.

Bullmore, E., Horwitz, B., Honey, G., Brammer, M., Williams, S., Sharma, T.,
2000. How Good Is Good Enough in Path Analysis of fMRI Data? Neuroim-
age 11 (4), 289–301.

Castelo, R., Roverato, A., 2006. A Robust Procedure For Gaussian Graphical
Model Search From Microarray Data With p Larger Than n. The Journal of
Machine Learning Research 7, 2621–2650.

Comon, P., et al., 1994. Independent component analysis, a new concept. Signal
Processing 36 (3), 287–314.

D’Aspremont, A., Banerjee, O., El Ghaoui, L., 2008. First-Order Methods for
Sparse Covariance Selection. SIAM Journal on Matrix Analysis and Applica-
tions 30, 56.

Dempster, A., 1972. Covariance selection. Biometrics 28 (1), 157–175.

Duchi, J., Gould, S., Koller, D., 2008. Projected Subgradient Methods for Learn-
ing Sparse Gaussians. UAI.

Edwards, D., 2000. Introduction to Graphical Modelling. Springer.

Friedman, J., Hastie, T., Hoefling, H., Tibshirani, R., 2007a. Pathwise coordi-
nate optimization. Annals of Applied Statistics, to appear.

Friedman, J., Hastie, T., Tibshirani, R., 2007b. Sparse inverse covariance esti-
mation with the graphical lasso. Biostatistics.

14



Friston, K., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neu-
roimage 19 (4), 1273–1302.

Genovese, C., Lazar, N., Nichols, T., 2002. Thresholding of Statistical Maps in
Functional Neuroimaging Using the False Discovery Rate. Neuroimage 15 (4),
870–878.

Hanson, S., Hanson, C., Halchenko, Y., Matsuka, T., Zaimi, A., 2007. Bottom-
up and top-down brain functional connectivity underlying comprehension of
everyday visual action. Brain Structure and Function 212 (3), 231–244.

Ishai, A., Ungerleider, L., Martin, A., Haxby, J., 2000. The Representation of
Objects in the Human Occipital and Temporal Cortex. Journal of Cognitive
Neuroscience 12 (90002), 35–51.

Just, M., Cherkassky, V., Keller, T., Minshew, N., 2004. Cortical activation and
synchronization during sentence comprehension in high-functioning autism:
evidence of underconnectivity. Brain 127 (8), 1811.
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